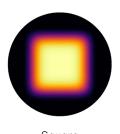


High quality beam shaper for ultra fast lasers

CANUNDA-PULSE


CANUNDA-PULSE main features:

- Optimum beam shaping quality
- Extended depth of field
- Preservation of pulse duration
- > Passive beam stabilization through mode-cleaning
- > Compatible with standard industry optical equipment

Main applications:

- Laser cutting
- Micro-drilling
- Surface functionalization
- > Thin film laser ablation
- Femtosecond laser stabilization

For now, 4 modules are available:

Square top-hat

Round top-hat

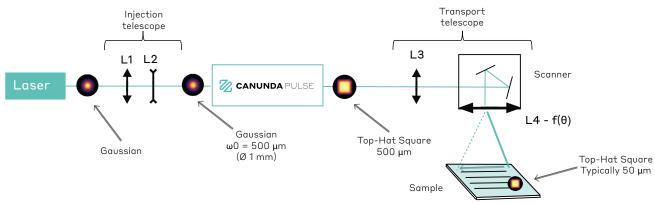
Mode cleaning only

CANUNDA-PULSE beam shaping modules provide high-quality ultrashort laser beam shaping: micrometer-sized dimensions in the machining plane, exceptional depths of field equivalent to a Gaussian beam, and sharpness at the diffraction limit. This quality of beam shaping improves the quality (e.g. conicity) and efficiency of micromachining processes.

Using its mode-cleaning feature, CANUNDA-PULSE passively

compensates for laser fluctuations and ensures that the laser is always stable in the processing plane.

The fully reflective architecture of the modules allows high peak power, up to 100 μ J for femtosecond pulses. The CANUNDA-PULSE modules can be easily integrated into micromachining machines and have been proven to maintain their performance over the full field of view of an F-theta lens.


Specifications

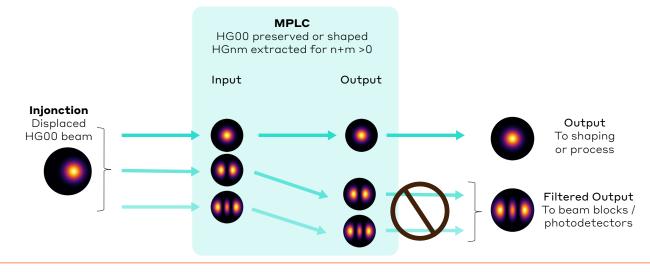
PARAMETER	S-03501	S-01001	R-03501	R-01001	L-01002	G-00003		
Shape	Square top-hat		Round top-hat		Line top-hat	Gaussian (Mode cleaning only)		
Output shape dimensions (±10%)	500 x 5	$500 \times 500 \ \mu m^2$		diameter	3500 x 180 μm²	500 µm waist		
Sharpness (±0.05)	0.33	0.10	0.33	0.10	0.1	N/A		
Plateau Uniformity (ISO 13694-2018)	< 0.2 N/A							
Transmission with TEM00 input	> 90 %							
Nominal input beam waist	500 μm							
Nominal input M ²	< 1.3							
Tilt stability	Output stable with tilt < 0.35 mrad							
Transmission with tilt	> 70 % with tilt < 0.35 mrad							
Shift stability	Output stable with shift < 250 µm							
Transmission with shift	> 70% with shift < 250 µm							
Size stability	Output stable with input beam size < 2x smaller or bigger							
Transmission with size variation	> 60% with input beam size < 2x smaller or bigger							
Central wavelength	1030 nm or 1064 nm							
Pulse duration	300 fs (typical)							
Pulse energy	< 100 μJ @ 300 fs							
Average power	< 100 W							
Module dimensions	350 x 150 x 70 mm³							

cailabs

Possible use configurations

In order to perform micro-processing with a USP (ultra-short pulse) laser, the following configuration may be used (all details of lens choice and tuning are given in the installation procedure):

The injection telescope aims at magnifying the beam waist to 500 μm and adjusting its position to the module. The transport telescope aims at imaging the top-hat beam onto the sample through a standard F-theta lens.

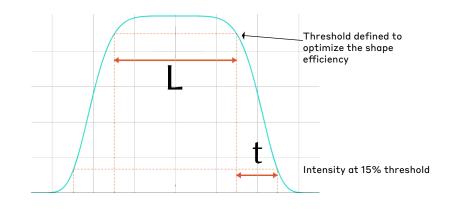

Many dimensions onto the sample are possible depending on the set-up to be used, some are given in the below table, other possibilities might be advised by Cailabs on request:

Square / Round dimensions (µm)		F-theta focal length (mm)						
		50	80	100	160	250		
L3 focal length (mm)	500	50	80	100	160	250		
	750	33	53	67	107	167		
	1000	25	40	50	80	125		

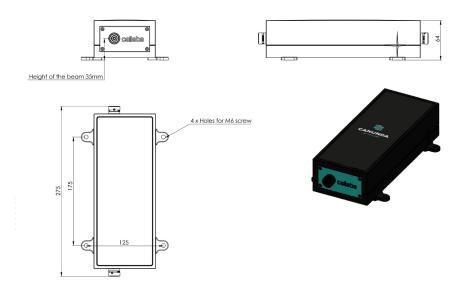
Line length/width (µm)		F-theta focal length (mm)						
		50	80	100	160	250		
L3 focal length (mm)	500	350/18	560/29	700/36	1120/58	1750/90		
	750	230/12	375/19	470/24	750/39	1170/60		
	1000	175/9	280/14	350/18	560/29	875/45		

Principle of mode-cleaning

The mode cleaning feature is a passive laser beam stabilizer that procures a unique solution against the various fluctuations of single mode laser beams, such as tilt, shift or astigmatism. It efficiently suppresses beam instabilities and provides a perfect and steady Gaussian or top-hat beam. This allows for more reliable and robust industrial processes where precision is crucial.



cailabs


Top-hat shape characteristics

The shape quality is given by the following metrics:

- Plateau Uniformity : per ISO standard 13694-2018.
- Shape Efficiency: the maximum ratio between the energy contained in an ideal 3D shape (cuboid, cylinder ...) inscribed in the beam shape and the total energy of the beam shape.
- Dimensions L: the dimensions of the base surface of the inscribed 3D shape used in the computation of the Shape Efficiency.
- Sharpness: the t/L ratio as defined in the below scheme

Physical dimensions

Ordering information

- CAPU-X-YYYYY-ZZZZ
- X-YYYYY: Shape code
- X: S Square ; R Round ; L- Line ; G Gaussian
 - YYYYY : 03501 Sharpness of 0.35; 03501 sharpness of 0.10; 01002 of 180 μm x 3600 μm; 0.003 6-modes mode-cleaner
- ZZZZ: Central wavelength 1030 or 1064 (nm)

38 boulevard Albert 1er 35200 Rennes - France www.cailabs.com canunda@cailabs.com