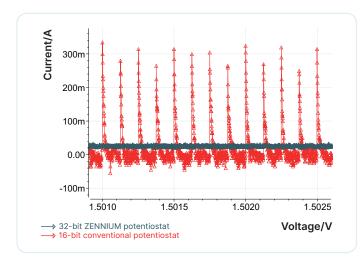


PRECISION IN ELECTROCHEMISTRY


ZENNIUM XC

THE COMPACT POTENTIOSTAT

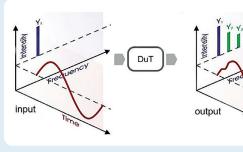


Main Specifications

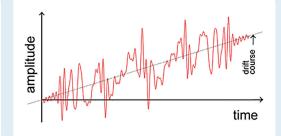
- → EIS frequency range 10 µHz 5 MHz
- → 32-bit DC and 24-bit AC resolution
- → ±5 V / ±14 V voltage range
- → ±2 A over 12 current ranges
- ➔ Online data processing for outstanding EIS

Slow CV scans with a scan rate of 10 μ V/s on a highly capacitive system with the ZENNIUM potentiostat (32-bit DAC resolution) and a conventional potentiostat (16-bit DAC resolution).

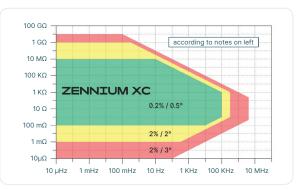
Single frequency (1 Hz), single period impedance measurements on a 25 $\mu\Omega$ resistor vs. time. The measurement is carried out with 1 A amplitude.


JJ THE HIGH-END POTENTIOSTAT

Our Strengths


Zahner potentiostats can carry out advance electrochemical measurements like NFRA and intelligent multi sine EIS measurement besides traditional electrochemical measurements.

For more information:


NFRA: ZENNIUM potentiostats can measure harmonics during the impedance measurement, making it capable to carry out non-linear frequency response analysis.

IM-Sine: ZENNIUM potentiostats can carry out intelligent multi-sine EIS measurements, significantly decreasing the total measurement time.

Accuracy Contour Plot

- → Z > 0.1 Ω : potentiostatic mode, amplitude 10 mV
- Z > 1 MΩ: potentiostatic mode, amplitude 50 mV, shielded
- → Z < 0.1 Ω : galvanostatic mode, amplitude 100 mA
- → Z < 0.01 Ω: galvanostatic mode, amplitude 1 A
- → Without DC bias voltage/current
- → Specified at the BNC terminals

:::-_ _

Specifications		
Potentiostatic modes ADC resolution Function generator Harmonic reject Cell connection Ground reference	potentiostatic, galvanostatic, pseudo-galvanostatic, rest 32 bit digital (analog: option ADF for scan rates up to 10 kV/s) > 60 dB @ 1/2 full scale 2-, 3-, 4-terminal kelvin grounded, floating	potential, ZRA, off
Frequency generator & analyzer	Low range	High range
EIS frequency range AC amplitude Accuracy Resolution	10 μHz to 5 MHz 0 to 2 V, 24 bit resolution < 0.0025% 0.0025%, 10,000 steps/decade	0 to 6 V, 24 bit resolution
Output potentiostatic	Low range	High range
Controlled voltage Resolution Accuracy Integral nonlinearity Compliance voltage Bandwidth IR compensation Small signal rise time Slew rate Phase shift	± 5 V 2.5 nV ± 200 μV ± 10 ppm of reading typ. 4 ppm, max. 8 ppm ± 14 V DC to 6 MHz @ 33 Ω load auto AC impedance technique, range 0 to 10 MΩ, reso 150 ns to 200 μs in 5 steps, automatic selection 15 MV/s 10° @ 500 kHz	±14 V 7.5 nV ±600 μV ± 10 ppm of reading typ. 12 ppm, max. 24 ppm ±14 V
Output galvanostatic		
Controlled current Current range Resolution Accuracy	±2 A ±1.9 nA to ±2 A in 12 current ranges 32 bit ± 0.2 ppb of FS ±0.1% of reading ± 0.04% of FS, ≥1 µA to 100 mA ±0.4% of reading ± 0.2% of FS, <1 µA or > 100 mA	
Input	Low range	High range
Max. Input voltage Voltage resolution Voltage accuracy DC current resolution DC current accuracy	± 5 V 2.5 nV ± 100 μV ± 5 ppm of reading 2 aA (32 bit) $\pm 0.05\%$ of reading $\pm 0.04\%$ of FS @ 1 μA 100 mA $\pm 0.5\%$ of reading $\pm 0.4\%$ of FS @ 100 mA 2 A $\pm 0.5\%$ of reading $\pm 0.4\%$ of FS @ 10 nA 1 μA $\pm 0.5\%$ of reading ± 125 fA @ < [1 nA] (HiZ-Probe)	±14 V 7.5 nV ±300 μV ± 10 ppm of reading

Input impedance Input leakage current Impedance range

Common mode rejection

Input channel phase-tracking acc.

Equivalent effective input noise

USB 2.0

> 10 T Ω || ±5 pF typ. (Main) / > 1000 T Ω || ±1 pF typ. (HiZ-Probe)

Remote integration

possible via Python

and C++. Check out

complete API

documentation.

< ±200 fA typ., < ±5 pA max., / < ±10 fA typ. (HiZ-Probe)

 $1 \text{ m}\Omega$ to $10 \text{ G}\Omega$ / 2% (Main)

100 m Ω to 100 G Ω / 2% (HiZ-Probe)

100 m Ω to 10 M Ω / 0.2%

10 $\mu\Omega$ to 1 G Ω / 2% (Gal)

> 86 dB @ 10 µHz to 100 kHz

> 66 dB @ 100 kHz to 5 MHz

±0.05° @ 10 µHz to 100 kHz

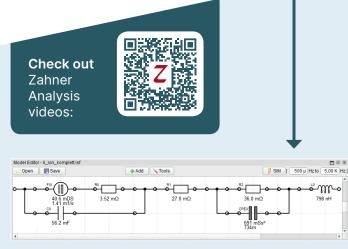
±0.125° @ 100 kHz to 5 MHz

1 m Ω to 10 M Ω / 0.2%

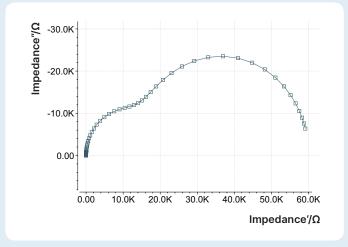
PC interface Dimensions / Weight Power supply Ambient temperature / humidity

160 × 255 × 385 mm³ / 8 kg 100/115/230 VAC, 50/60 Hz +10 °C to +30 °C / < 60% without derating

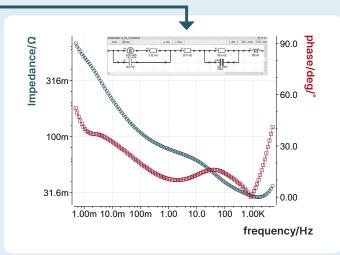
1 µV rms / 100 fA rms @ 1 mHz to 10 Hz

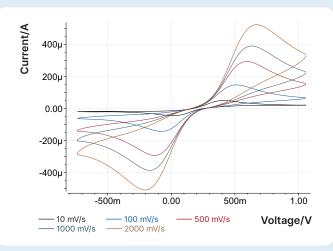

Zahner Analysis

EIS fitting


- → Create equivalent electrical circuits
- → Fit impedance spectra
- Single fitSeries fit
- → ZHIT tool
- → Significance plot
- → Fitting accessible via API

Other techniques


- → Cyclic voltammetry
 - > Peak determination > Charge integration
- → Tafel slope measurements
- → Butler-Volmer measurements
 → Analysis of photoelectrochemical measurements



Impedance spectrum (Nyquist plot) with two time constants

Impedance spectrum (Bode plot) of a battery with the equivalent electrical circuit

CV scans measured at different scan speeds

ZHIT

The Zahner Analysis software features the unique **ZHIT** tool, which helps identifying artifacts in impedance spectra and allows reconstruction of artifact-free impedance spectra for fitting.

Significance Plot

Zahner Analysis software features an exclusive tool called the **significance plot**, which evaluates the frequency-dependent significance of equivalent circuit elements in the fitting. Zahner-Elektrik GmbH & Co. KG contact@zahner.de www.zahner.de

Per l'Italia: Quantum Design s.r.l.

Dario D'Ubaldo dubaldo@qd-europe.com **www.qd-europe.com**