














### TriLambda relies on innovative, patent-pending technology to surpass other x-ray microscopes



## Bring synchrotron XRM capabilities to your lab

#### Highest resolution x-ray microscope with multi-energy capabilities

Tri Lambda <sup>™</sup>-40 3D nano x-ray microscope is the highest resolution (40 nm) laboratory x-ray microscope in the world, with the power to image internal nanostructure and optimized performance in a wide range of samples, spanning everything from cells and polymers to geological samples and metals.

### What sets the Tri Lambda apart?

The Trilambda is a tri-energy system that provides the highest resolution on the market. It is one of two zone-plate-based nanoCTs on the market, both developed by Dr. Wenbing Yun, who is well-recognized as a pioneer in x-ray microscopy and was the founder of Xradia (now the x-ray microscope division of Carl Zeiss). The system features significant improvements over previous technology, including better resolution, increased field of view (FOV), and multi-energy capabilities for faster data acquisition and increased contrast.

Patent-pending X-ray technology: source & optics Achieving the unparalleled performance of the Tri-Lambda requires major innovations in key component technology.

Sigray has developed an ultrahigh brightness x-ray source featuring an x-ray target comprised of multiple materials in close thermal contact with a diamond substrate. Software selection of the target material enables rapid switching between different characteristic x-ray energies of each material, for example: 5.4 keV (Cr), 6.4 keV (Fe), 8 keV (Cu), and more. The flexibility in energy choice overcomes the trade-off of other systems in which only a single operational x-ray energy must be selected upfront.

Coupled to the source are twin paraboloidal microfocusing x-ray optics, a type of optic exclusively fabricated by Sigray. Compared to ellipsoidal capillaries, these optics provide uniform illumination of the zone plate and increased imaging performance.





Highest resolution, rapid throughput 3D x-ray microscope for accelerating research in advanced laboratories



Lambda is zoneplate-based to achieve unprecedented resolutions High resolution mode: 40 nm spatial resolution | 10 nm voxel Large field of view mode: 120 nm spatial | 40 nm voxel

### TriLambda advantages at a glance

- Highest resolution 3D XRM, with 40 nanometer spatial resolution
- Patent-pending x-ray source with multiple x-ray source target materials for unique advantages including dual energy imaging and optimization of acquisition speed
- Optimized throughput for time-based (4D) & in-situ studies
- Designed by the world's foremost experts on x-ray microscopes

| Parameter                | Specification                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| High resolution mode     |                                                                                                                                                       |
| Resolution               | 40 nm                                                                                                                                                 |
| Voxel                    | 13 nm                                                                                                                                                 |
| Field of view            | 18 µm                                                                                                                                                 |
| Sample size              | 15 - 25 µm preferred                                                                                                                                  |
| Large field of view mode |                                                                                                                                                       |
| Resolution               | 120 nm                                                                                                                                                |
| Voxel                    | 40 nm                                                                                                                                                 |
| Field of view            | 60 µm                                                                                                                                                 |
| Sample size              | 60 - 100 µm preferred                                                                                                                                 |
| Contrast mode            | Absorption and phase contrast                                                                                                                         |
| Source                   | Sigray high brightness<br>microfocus source                                                                                                           |
| Target material          | Dual energy (standard):<br>Cr (5.4 keV) and Cu (8.0 keV)<br>Additional targets include:<br>Fe (6.4 keV), Au (9.7 keV),<br>others available on request |
| Power                    | 100 W                                                                                                                                                 |
| X-ray optics             |                                                                                                                                                       |
| Condenser                | 2 sets of Sigray twin<br>paraboloidal x-ray optics<br>matched to zone plates                                                                          |
| Focusing objective       | Fresnel diffraction zone plate lens system                                                                                                            |
| Phase ring               | Zernike phase shift ring                                                                                                                              |
| X-ray detectors          | High efficiency x-ray detector system, CCD 2048 x 2048 pixel                                                                                          |
| Footprint [L x W x H]    | 2.3 x 1.3 x 1.5 m, 2000 kg                                                                                                                            |
| Maximum load             | 1 kg                                                                                                                                                  |
| Stage                    | High precision tomography stage with 12 x 10 x 12 mm travel XYZ                                                                                       |



