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A B S T R A C T   

This study examines the potential of near-infrared hyperspectral imaging for assessing the size of polymer 
particles in model fractions based on the scattering phenomena. Different fractions of ground polymers, either 
polymethyl methacrylate or polypropylene, were characterized by near-infrared spectra collected between 900 
and 1700 nm. The possibility to estimate the size of polymer particles using hyperspectral images was confronted 
with a basic single spot near-infrared measurement. Hyperspectral imaging, in addition to the standard spectral 
data dimension, provides information about the spatial distribution of sample components and reveals changes in 
physical properties. Therefore, one can gain a better insight into the scattering phenomena and study the physical 
inhomogeneity of a sample in terms of particle size distribution. The partial least-squares models constructed to 
estimate particle size of polymers that were characterized by hyperspectral images (a pixel-based approach) 
outperforms models built for mean spectra regardless of the considered powdered polymer.   

1. Introduction 

Light scattering is a natural phenomenon that occurs in spectroscopic 
signals. Like any physical interference, it decreases the intensity of the 
chemically relevant analytical signal. Generally, these undesired in-
terferences are generated by the physical inhomogeneity of a sample. 
Surface roughness is a good example of physical inhomogeneity. It is 
caused by droplets, dust grains, bubbles, fibers, fluctuations in density, 
defects in the crystal structure and any cells or microorganelles that are 
present in biological samples [1]. All of the physical features contribute 
to the inherent characteristics of solid samples, the analysis of which is 
becoming increasingly popular. An analysis of sample composition is 
facilitated by using advanced high-quality near-infrared imaging, which 
operates in the so-called near-infrared (NIR) spectral region (between 
800 and 2500 nm), provides non-destructive, rapid measurements and 
requires very little sample preparation. The NIR spectra are mainly 
formed through combinations of the overtones of the fundamental bond 
vibrations, which are primarily present in the mid-infrared spectral 
range and the scattering component often affects the shape of the 
spectra. 

In contrast to other spectroscopic signals, scattering can substantially 
mask the analytical information in the NIR range. This is why many 
preprocessing methods have been developed to suppress the scattering 
effect [1,2]. Multiplicative scatter correction (MSC) [3] and inverted/ 
inverse scatter correction (ISC) [4], as well as their modifications, i.e., 

the extended multiplicative scatter correction (EMSC) [5] and the 
extended inverted/inverse scatter correction (EISC) [6], represent the 
well-established applied methods for scattering correction. 

However, in the last years, some articles have been published, indi-
cating that basic spectral preprocessing techniques can negatively affect 
the prediction performance of a model [7–9]. Therefore, novel and more 
robust techniques aiming at reducing undesired sources of spectral 
variability have been proposed, including normalization variants such 
as, for instance, variable sorting for normalization (VSN) [10] – a 
weighted modification of standard normal variate (SNV) [11]. More 
comprehensive techniques are based on the concept of orthogonalized 
spectral pretreatment, for instance, sequential preprocessing through 
orthogonalization (SPORT) [12] and parallel preprocessing through 
orthogonalization (PORTO) [13]. 

Although the scattering phenomenon represents an undesired part of 
the analytical signal in standard applications and most efforts are 
focused on reducing it, scattering can also be used to characterize a 
sample. As is discussed in the literature, NIR reflectance spectroscopy 
can be used to determine the size of the particles in powdered and 
ground samples by quantifying the scattering effect [14]. This approach 
has large implementation potential in the process analytical technology 
(quality control of tablets and granules) [8,15–18]. 

A novel possibility for estimating the physical properties of bulk 
powders that is based on the reflectance spectra that are collected in the 
Vis/near-infrared region has recently been developed [19,20]. A smart 
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double-integrating sphere setup [21] and the concept of measuring a 
sample in both the reflectance and transmittance modes simultaneously 
provide more in-depth information about a powder sample and even 
enables prediction of particles distribution [19]; however, a sample has 
to be suspended in a solvent before being measured. 

To date, many studies that associate the particle size of powdered 
samples with the scattering component of the NIR spectra have been 
undertaken. However, in these studies, a sample is usually described by 
a single spectrum that cannot reflect surface heterogeneity and particle 
size distribution. In standard NIR applications, the reflectance spectra 
are collected to reduce a solid sample’s heterogeneity, for instance, by 
spinning a sample to obtain a representative spectrum, but then infor-
mation about the heterogeneity is inevitably lost. The near-infrared 
hyperspectral imaging (NIR-HSI) is an extension of the classic NIR, 
which enables the sample surface to be characterized and the homoge-
neity fluctuations to be visualized. A sample is described by many 
reflectance spectra. They are recorded at measurement points (pixels) 
that are distributed over the entire sample surface. Consequently, a 
single spectrum can be replaced by hundreds of reflectance spectra that 
resemble the physical variability of a sample surface. NIR-HSI has found 
many applications in analytical chemistry and process analytical tech-
nology, primarily for solving quality control issues [22–24]. 

Adequately designed experiments with hyperspectral imaging 
detection provide insight into the effect of scattering on the predictive 
potential of multivariate models. In this study, we examined how the 
scattering affects the calibration models estimating particle size of 
powdered polymethyl methacrylate or polypropylene. The different 
physicochemical parameters of these two thermoplastic polymers, 
including the particle size, affect the melting process. Polymethyl 
methacrylate is an amorphous resin that has a randomly ordered mo-
lecular structure and melts steadily as the temperature rises, even below 
the melting point. Polypropylene is a semi-crystalline resin and remains 
hard until the melting temperature is reached. The observations that 
were made during the experiment lead to more general conclusions 
regarding the usefulness of the NIR-HSI approach for online applica-
tions. Estimating particle size is essential not only for pharmaceutical 
technology. In the polymer industry, many products are obtained by 
different compression molding methods (e.g., injection molding, 
compression molding, powder injection molding, etc.). The feedstock 
that is used for these processes is usually supplied as cylindrical pellets 
or resin powders [25,26]. The geometry and size of the raw material 
affect the uniformity of melted resin and determine the final quality of a 
product. In different industrial branches, fine-powder grade polymer 
feedstock is preferred for compression molding and it is used to avoid 
any granular boundary fragments in the molded resin [26]. Therefore, 
developing new remote and online applications for estimating powder 
particle size can enhance quality control in the polymer industry. 

2. Theory 

2.1. Popular techniques for estimation of particle size 

The dynamic light scattering (DLS) method [27,28] is often used to 
determine particle size and evaluate scattering. DLS is based on the 
diffusion behavior of the particles in a suspension that is illuminated 
with a laser beam. During the measurement, any changes in the scat-
tering intensity are recorded. Later, the Stokes-Einstein relationship is 
used to estimate the size of the particles. Despite the many applications 
for DLS, it has limitations. The multiple scattering affects the measure-
ments for large particles and particles that are characterized by a high 
refractive index. Additionally, DLS is imprecise when samples are rep-
resented by particles with a wide range of diameters. Therefore, before 
analysis, any polydisperse mixtures have to be separated and a sample 
must be dispersed in a liquid. Laser diffraction (LD) [29,30] overcomes 
this drawback. The intensity of particle scattering is recorded as a 
function of the scattering angle, which enables examining the 

suspensions and solid powders by dry dispersion. However, dry dis-
pertion is not readily available in standard LD instruments and requires 
an additional sample flow accessory (see, e.g., LA-960 PowderJet, 
Horiba or Mastersizer 3000 with the Areo S disperser, Malvern Pan-
alytical). The LD technique was initially developed to analyze particles 
in suspensions. The measurements of dry powders are less accurate 
compared to the results that are obtained for samples suspended in a 
liquid. Moreover, because of the requirement of expensive detectors and 
a laser source, all laser diffraction analyzers are relatively expensive. 
These shortcomings are partially solved in dynamic image analysis (DIA) 
[31–34]. It is usually based on analyzing images of particles that have 
been separated using the free-fall method. The falling samples are illu-
minated with powerful light pulses that reduce blurring and support the 
registering of sharp images of the particles. DIA also offers the possibility 
to estimate the size and shape of a particle. This technique is not based 
on the light-scattering phenomena and can analyze particles with di-
ameters that range from a few micrometers to several millimeters (e.g., 
Analysette 28 ImageSizer, Fritsch, Camsizer X2, Retsch Technology 
GmbH or QICPIC particle size and shape analyzer, Sympatec GmbH). 

Size estimation of tiny particles (nanometer scale) can also be done 
using transmission electron microscopy (TEM) followed by image 
analysis. Microscopy is frequently selected to examine nanoparticles and 
even can assist in examining particle size distribution [35]. Unfortu-
nately, TEM cannot be considered a high-throughput technique, and 
thus, due to the effective measurement range of particle sizes, it finds 
many applications in nanotechnology. 

A broader application potential arises from instrumental configura-
tions based on inexpensive and widely available digital cameras. The 
possibility of particle size estimation of sand-sized materials, e.g., sedi-
ments [36] and soils [37] has been shown in different studies. Such an 
approach to a sample examination requires image analysis methods 
based on pattern spectra descriptors or other image statistics. To this 
day, the potential of standard digital cameras for examining particle size 
in the range of millimeters has been investigated [37]. 

The main direction of development in estimating particle size based 
on the scattering phenomena involves lowering the price and reducing 
the size of the instruments. Over the past few years, CMOS and CCD 
sensors have replaced the expensive detectors in LD analyzers, and 
highly precise lasers have been substituted with inexpensive light- 
emitting diodes (LED). Examples of new devices that are equipped 
with these accessories include a smartphone camera sensor [38] or an 
angular spatial filter (ASF) [39]. In addition, chemometric methods are 
being used to predict particle size because they enable complex scat-
tering correction models to be replaced and decrease the computation 
time [39]. 

2.2. Near-infrared spectroscopy and near-infrared hyperspectral imaging 

NIR spectroscopy is a different approach to estimating particle size. 
NIR spectra have two components: absorption and scattering. Usually, 
the primary spectral information is related to absorption (and thereby, 
to the chemical content of a sample). Thus, NIR has been ignored as a 
technique for predicting particle size [27]. However, the NIR spectra 
reflect scattering and can help to estimate the diameter of particles in 
solid samples [1,14–18]. In order to extract particle scattering infor-
mation from the NIR spectra, a reference set of samples with different 
particle sizes must be measured. The idea is to reduce every spectrum to 
a few latent variables, which are a linear combination of the original 
spectrum intensities (e.g., the principal components that are obtained 
from a principal component analysis, PCA) and then calculate the 
regression coefficients between these latent variables and the particle 
size of the sample using a model. The model is then used to predict 
particle size in a new material based on the corresponding spectrum. The 
limitation in NIR spectroscopy arises from the assumption of sample 
homogeneity that excuses sample characterization by a single spectrum. 
However, local fluctuations of homogeneity can distort the final model 
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and eventually restrict its prediction properties. Near-infrared imaging 
was developed to overcome this limitation and combine the advantages 
of NIR spectroscopy such as rapid, non-destructive, and remote mea-
surements of solid samples that require no extensive preparation with 
the potential of hyperspectral imaging. It opened the possibility to 
evaluate the physical heterogeneity of powder samples (including the 
size of the particles) through sampling the pixels of an image and per-
forming a statistical analysis of these. Based on the results and con-
structed models, the particle size can then be inferred and the scattering 
effect for tested samples can be quantified. NIR-HSI data consist of 
multiple images that were recorded at subsequent wavelengths within 
the selected spectral range. Hyperspectral imaging focuses on the region 
of interest of the sample surface (see Fig. 1). Therefore, compared to 
basic NIR spectroscopy, the possibilities of HSI are broader, especially 
when information about material defects or chemical homogeneity is 
vital. Most HSI applications are analytical and the possibility of evalu-
ating physical properties has been explored less. To the best of our 
knowledge, HSI has not been extensively used to predict particle size 
based on the scattering effect. In contrast to DIA, NIR-HSI measurements 
do not require the particles to be separated, and therefore, the mea-
surement system is less complex and more efficient. Moreover, using the 
chemometric methods, hyperspectral data can be preprocessed online, 
and information about the sample is readily available. These features 
make NIR-HSI attractive for online industrial quality control applica-
tions. Unlike the other instrumental techniques described in Section 2.1, 
HSI is mainly used to characterize the chemical content of a sample. 
However, based on the reflectance spectra, the chemical and physical 
properties can be analyzed simultaneously. All of these NIR-HSI features 
make this technique very promising for examining scattering, relating 
the scattering with the physical heterogeneity of the sample surface. 

3. Experimental section 

3.1. Samples preparation 

Polypropylene (PP) and polymethyl methacrylate (PMMA) pellets 
were used as the subjects of the study. Each polymer was ground for two 
minutes in an FW80 laboratory grinder (Chemland, Stargard Szcze-
cinski, Poland). The obtained powder was sieved manually using nine 
different sieves with mesh sizes of 1500, 600, 385, 300, 250, 200, 150, 
100, and 75 µm, respectively. Eight fractions of the polymer particles 
were obtained: (1) <1500 and >600, (2) <600 and >385, (3) <385 and 
>300, (4) <300 and >250, (5) <250 and >200, (6) <200 and >150, (7) 
<150 and >100, and (8) <100 and >75 µm. Three individual samples 
were prepared for each fraction. The powdered polymer samples were 
placed in cylindrical metal cuvettes (8 mm diameter and 2 mm deep). 
The surface of each sample was flattened and leveled to the upper 
cuvette rim by gentle tapping. 

3.2. Hyperspectral camera and image acquisition settings 

Images of the different polymer particle fractions were registered 
using a Specim FX17e hyperspectral camera (Specim, Spectral Imaging 
Ltd., Oulu, Finland), which was used in the push-broom mode (640 
pixels were captured during each single line scan of an image). For each 
pixel, the reflectance was measured at 224 equally distributed spectral 
channels from 935.61 to 1720.2 nm. The region of interest was illumi-
nated by three 50 W tungsten-halogen lamps. The measurement stage 
with the studied samples was attached to the top of a laboratory scanner, 
10 cm below the camera lens and moved steadily during image acqui-
sition. A total of four images were collected. In two subsequent mea-
surements, the image of each set of cuvettes with one type of polymer 
was collected. The cuvettes were arranged perpendicular to the illumi-
nation source to ensure the most homogeneous light illumination. The 
measurement parameters were adjusted to obtain hyperspectral images 
with the highest possible signal-to-noise ratio as well as to maintain the 
appropriate aspect ratio in the resulting image (in x- and y) directions. 
Therefore, the exposure time, the frame rate and the scanning speed 
were set to 5 ms, 190 Hz, and 19 mm⋅s− 1, respectively. 

3.3. Light calibration, image masking, and spectral trimming 

The light intensity for all of the images was normalized to unity [40] 
using a Teflon calibration tile and closed camera shutter as a white and 
dark reference, respectively. The irrelevant image region was trimmed 
on both sides. The trimmed images were then merged in pairs to collect 
samples of one type of polymer in a single data cube and facilitate 
further analysis and interpretation. The dimensions of each data cube 
were 1000 × 322 × 224 and 1022 × 322 × 224 for the PMMA and PP 
samples, respectively. 

The image foreground and background were detected using adaptive 
image thresholding with the Gaussian-weighted mean in the neighbor-
hood [40]. The procedure was performed using the MATLAB built-in 
function ‘adaptthresh.m’ [41,42]. The input parameters such as the 
sensitivity factor and the neighborhood size were set to 0.3 and 25, 
accordingly. In the original hyperspectral image, two redundant com-
ponents were visible, namely a black rubbery pad and fragments of the 
metal cuvettes, and therefore these image features were removed. To 
effectively mask any undesired image components, the image that was 
used as the input for the ‘adaptthresh.m’ function was enhanced to 
expose the polymer powder better. The improved input image for each 
set of samples was obtained by subtracting two two-dimensional images 
from the corresponding hyperspectral cube. These images were selected 
arbitrarily using two wavelengths with different spectral intensities in 
the polymer spectrum. As a result, the intensity of polymer pixels was 
increased over the remaining image components because of the image 
subtraction, which made the further background masking more 
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Fig. 1. Image of the score values of the first principal component that were 
obtained from the original hyperspectral images for fractions of: (a) PMMA and 
(b) PP. 
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accurate. For PMMA, the input image was obtained by subtracting the 
images that were recorded at 1255.9 and 1175.4 nm and for PP, the 
images that were recorded at 1315.6 and 1189.4 nm. Before any 
modeling procedure, the data’s spectral dimension was trimmed to a 
966.7–1688 nm spectral range in order to eliminate noisy wavelengths. 

In certain situations, a shiny surface can reflect light stronger than 
the reference Teflon calibration tile and the intensities of specific spectra 
are larger than the normalized signal values. Therefore, pixels that 
corresponded to the spectra with intensity values that exceeded 0–1 
were masked. Moreover, the noisiest pixels (the ones with the highest 
standard deviation were calculated for each spectrum that had previ-
ously been subjected to the second derivative) were also eliminated. 
From each sample (cuvette), one thousand spectra (pixels) with the 
lowest noise were selected for further analysis. 

A more detailed discussion concerning the selection of the region of 
interest (ROI) and the detection of extreme pixels can be found in 
Ref. [40], where consecutive steps of image masking correspond to 
image processing carried out in this study. 

3.4. Software used for image collection and data processing 

The hyperspectral camera and the laboratory scanner were 
controlled using Lumo Scanner software (Specim, Spectral Imaging Ltd., 
Oulu, Finland). All of the image processing steps and analyses were 
performed in MATLAB R2019a (MathWorks, Natick, MA, USA) using in- 
house implemented algorithms. 

4. Results and discussion 

4.1. Initial data exploration 

In the first step, the hyperspectral data were explored in an unsu-
pervised manner. A visual evaluation of the chemical inhomogeneity, 
the level of signal noise and incidental spectroscopic artifacts of various 
origins and structures (the so-called dead pixels, signal spikes and 
spectra that exceed the spectral reflection intensity of the reference 
materials) are essential because these image components may signifi-
cantly affect the final calibration model. Since the experiment was 
designed to reduce the impact of the chemical inhomogeneity (pure 
polymer samples were ground and sieved), we expect that the most 
considerable influence would correspond to the physical variability of 
the bulk powder, instrumental noise and spectroscopic artifacts that 
occasionally appear in images. Because of the lack of chemical vari-
ability, the artifact contributions to the overall data variance are sub-
stantially greater than in most of the analytical experiments based on 
hyperspectral imaging that have been conducted to date. On the other 
hand, incidental artifacts can alter the shape of spectral profiles. Such 
outlying spectra must be removed before constructing any least-squares 
model [43]. Therefore, the images were carefully examined before 
further processing. 

Individual PPMA and PP samples, which are visualized as images 
using the PCA scores, are interesting because they can reveal possible 
trends between particle size and a reduced spectral representation. The 
first principal component described most of the data variance (more 
than 80%), while the second principal component modeled the vari-
ability related to the scattering well. This effect became apparent for 
PPMA and PP samples when the corresponding pseudo images of the 
score values of the second principal component, which is shown in 
Fig. 1, was analyzed. The colors of the image pixels changed propor-
tionally to the score values and the size of the particles that constituted 
the different fractions. For PPMA and PP, the second principal compo-
nent captured 17.4% and 12.1% of the total data variability. In Fig. 1, 
the colors of the pixels and their hue changed from navy blue to dark 
red. It was also readily apparent that the polymer samples in a fraction 
were more similar to each other in their color intensity and hue than the 
particles from the other fractions. 

Fig. 1 presents the image regions in which the sample’s homogeneity 
fluctuated. They were formed by groups of eye-catching pixels that 
appeared as spots or rings. Because of the mixing effect, the tiny particles 
were close to the cuvette rims in all of the fractions regardless of the 
polymer type (see the characteristic emerald ring around each cuvette in 
Fig. 1). The possibility to trace sample heterogeneity spatially is the 
substantial advantage of NIR-HSI over basic “single spot” reflectance 
NIR spectroscopy. 

4.2. Two approaches for modeling the HSI data 

Hyperspectral data can be examined using the spectral information 
from each pixel independently as is presented in Fig. 1. Each region of 
the sample surface was represented by image pixels of a given color 
intensity and hue. In this way, the spatial inhomogeneity of a sample can 
be readily exposed, which is the most valuable advantage of the 
hyperspectral technique. However, in some cases, the noise and spatial 
variability distort the NIR spectra and hamper their interpretation. 
Therefore, an analysis of the averaged spectra that describe a selected 
image object might be more convenient and sufficient. Moreover, such 
data representation diminishes the influence of noisy spectra by aver-
aging the spectra that correspond to the pixels that describe each 
cuvette. In our study, such an approach was considered to mimic the 
measurements using a traditional NIR spectrometer. On the other hand, 
the averaged spectrum that is obtained for the selected region is more 
reliable than the one recorded using a standard NIR spectrometer 
because of the larger surface sampling. 

The trend between the scores of the first principal component and the 
average polymer particle size are presented in Fig. 2. 

There were a few interesting observations. The trend that can be 
observed in Fig. 1 was less evident when the averaged spectra were used 
to derive the principal components (see Fig. 2). Generally, the rela-
tionship between the different diameters of the fractions and the cor-
responding score values was maintained. The score plots that are 
presented in Fig. 2 demonstrate that the fractions that contained the 
finest particles of PMMA or PP did not follow the overall trend. 

For the averaged spectra, the first principal component explained a 
more significant portion of the total data variance compared to the first 
principal component that was obtained for the set of the spectra of all of 
the pixels. For the PMMA and PP samples, it accounted for 92.43% and 
95.68%, respectively. Moreover, unlike the pixel representation of the 
data, the first principal component explained the particle size in the 
different fractions most accurately for the averaged data representation. 
This observation was not surprising since the contribution that arises 
from the physical heterogeneity is minimized by the averaging and the 
primary source of variance is related to the systematic differences in the 
particle sizes. However, this did not improve the particle size predictions 
for the averaged spectra, which indicated that a small part of the data 
variability supported the modeling. The relationship between the first 
principal component scores and the particle size was nonlinear, and 
individual principal components may not carry relevant information to 
explain the scattering phenomena and related secondary physical fea-
tures of the powder fractions sufficiently. 

In Fig. 2a2 and b2, two loading vectors of the first principal 
component were plotted for PMMA and PP samples, respectively. Their 
values can be compared with the corresponding polymer spectra, dis-
played in Fig. 2a3 and b3. It is worth noting that large absolute values 
indicate informative wavelength channels. They can be associated with 
peaks and spectral features in the NIR spectrum that explain the scat-
tering effect related to particle size to the largest extent. 

4.3. Modeling particle size using partial least-squares regression 

Different partial least-squares models (PLS) that had an increasing 
number of latent variables have been constructed to study the effect of 
preprocessing on eliminating the scattering component. They were 
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independently built for the PMMA and PP polymer powders that are 
represented by either individual spectra that are obtained from each 
image pixel or by the averaged spectra of the pixels that describe the 
cuvette content. The reference values, mean particle sizes (yref1), cor-
responded to an arithmetic mean of the upper and lower diameter limit 
for each fraction. Such a selection of reference values was motivated by 
the unimodal and ‘gaussian-like’ distribution of the PCA scores that 
obtained for the NIR spectra that describe the entire region of a given 
cuvette. 

Initially, the PLS model was built for the averaged spectra and was 
validated using individual pixel spectra (not considered during model 

construction). In Fig. 3, the cuvette content is displayed as images using 
the predicted response values for each spectrum based on the optimal 
PLS model for PPMA and PP. The color of each pixel is proportional to 
the predicted response value. 

The white spots in Fig. 3 represent the outlying pixels that corre-
spond to the noisiest and most distorted spectra. Before model con-
struction, they were masked to reduce their harmful effect on the model. 
The calibration data set consisted of balanced representations of the 
spectra from each cuvette (1000 spectra). A detailed description of how 
the region of interest was selected can be found in Section 3.3. The in-
formation provided in Fig. 3 should be interpreted with caution. The 

(a1) (b1)

(a2) (b2)

(a3) (b3)

Fig. 2. (a) PMMA samples and (b) PP samples. (1) Trend between the score values of the first principal component for a sample described by the original averaged 
spectra and the reference mean particle size of a given fraction, (2) loading vector of the first principal component, (3) averaged spectrum of a given polymer sample. 
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color of a pixel does not resemble the actual size of the particle(s) at a 
given location. Specific polymer fractions can contain particles with a 
diameter smaller than the actual pixel size. Therefore, estimating the 
particle size at a given pixel location represents the average size. 
Otherwise, the size of the particles from the remaining fractions, for 
instance, fraction no. 1, are similar or larger than the area of an indi-
vidual pixel in the image. Even in this situation, samples still contain 
local inhomogeneities that can be detected on a hyperspectral image, 
mainly when the edge of a particle or the intersection of a few edges of 
different particles is found within the area of an individual pixel. Then, 
the pixel color does not explicitly reflect the actual size but instead in-
forms about the accumulation of local inhomogeneities and therefore, it 
can be considered for predicting particle size. 

The outlying pixels are more frequently observed for fractions with 
larger particles in which the probability of the occurrence of spatial 
homogeneity is much higher. This phenomenon is observed when there 
is a fragment with a smooth surface of larger particles in nearly the 
entire field of view. Then, the prediction at a specific location, which 
was estimated by the model, does not correctly represent the studied 
fraction. This can be seen in the cuvettes in the upper part of the left 
column in Fig. 3 (fraction no. 1). 

The similarities among the samples from the same fraction in Fig. 3 
seem to be larger than the ones in Fig. 1. The rings of the smaller par-
ticles that gathered near the cuvette rim are visible in many different 
fractions. In this way, very detailed trends can be detected in the spectral 
data. Moreover, an analysis confirmed that the predictions of a local 
inhomogeneity using the PLS model were correct. 

4.4. Hyperspectral measurements versus ‘single-spot’ NIR measurements 

It was necessary to adopt the same approach for a quantitative 
comparison of the different data representations. All of the models that 
were based on mean spectra were established by averaging 1000 
selected spectra from each cuvette and calculating the regression co-
efficients bpls1 based on the reference mean particle size (yref1). In the 
pixel-based approach, the initial reference values of particle size for each 

pixel (yref2) were evaluated using the mean spectra PLS model (bpls1) 
and an independent set of spectra from each pixel of the hyperspectral 
image. The pixel-based PLS models were constructed from the evaluated 
reference particle size values (yref2) of individual pixels. Then, the pre-
dicted particle size values for the pixels (ypred2) were averaged and 
compared with the reference mean values of the actual particle size 
(yref1). 

The major steps of the procedure can be summarized as follows:  

(1) calculate the mean reference spectra for each sample;  
(2) construct a vector with reference particle sizes values (yref1), 

corresponding to the mean reference spectra;  
(3) construct the first PLS model that relates mean spectra and the 

vector with reference particle size values (yref1);  
(4) use regression coefficient from the first PLS model (bpls1) for 

estimation of the initial reference values of particle size for each 
individual pixel (yref2);  

(5) construct the pixel-based PLS model for spectra of individual 
pixels and the estimated value of particle size for each individual 
pixel (yref2). 

The ‘single spot’ NIR measurement was simulated by calculating the 
arithmetic mean for all of the spectra from each cuvette. The PLS models 
based on averaged spectra do not require additional evaluation and the 
second step of calculation to obtain the initial reference values of par-
ticle size for each pixel (yref2) as in the pixel-based approach. Only the 
averaged spectra and the vector with initial average reference mean 
particle size (yref1) are required. Thus, average-based spectra modeling 
represents the most standard regression framework. 

Different models were compared in terms of their fit and the pre-
diction power, which are expressed by R2 and Q2 values, respectively. 
The Q2 values were calculated using the leave-one-fraction-out cross- 
validation. The values of R2 and Q2 are presented in Table 1. 

An analysis of the Q2 values confirmed that it is possible to estimate 
the average particle size that corresponds to the different polymer 
powder fractions using the NIR-HSI technique. The most promising PLS 
models that were constructed for the PMMA and PP powders had Q2 

value above 0.98. The values of R2 and RMSE indicated that models 
constructed for the averaged spectra fit the data better than models that 
had been built for the spectra of image pixels. However, when evaluated 
for the independent samples, their prediction abilities were expressed by 
lower Q2 values than for pixel-based models. Therefore, a NIR hyper-
spectral camera can provide a set of calibration spectra that support the 
construction of more reliable models for estimating particle size than the 
NIR spectrometers that are equipped with a spinner accessory. 
Furthermore, the logarithmic transformation of a dependent variable on 
the performance of the PLS models was also examined. The relatively 
large values of Q2 indicated that this transformation was beneficial for 
both types of calibration models (constructed based either on the aver-
aged spectra or the set of spectra that were associated with individual 
image pixels). 

4.5. Pixel-based model performance and its enhancement 

The use of derivatives can increase the performance of pixel-based 
PLS models. The influence of derivatives on the performance of the 
PLS models estimating particle size was examined by comparing the Q2 

values. The Q2 values were obtained for different PLS models and 
calculated in the function of their complexity (see Fig. 4). 

For the PMMA and PP polymers, the spectra derivation led to an 
increase in Q2 values compared to the Q2 values of the PLS models that 
had been constructed for the original spectra. The trend is depicted in 
Fig. 4a and b. Moreover, regardless of the derivative method that was 
used (Norris-Williams (NW), Savitzky-Golay (SG), the second or the first 
derivative), the Q2 values increased steadily with the number of PLS 
factors. This observation was somewhat counterintuitive because the 
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Fig. 3. Image of the predicted size of the particles obtained from the PLS 
models with six PLS factors for: (a) PMMA and (b) PP original log(1/R) spectra. 
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first derivative was expected to reduce the baseline distortions, and the 
second derivative was additionally expected to decrease the multipli-
cative effects. These two spectral features are components of the scat-
tering phenomena that occur in the NIR range. Surprisingly, the 
predictions of the particle size were more accurate after the spectral 
derivation. 

As was shown in this study, spectra derivatization offered better 
predictions of the particle size. This beneficial trend was maintained for 
all of the examined data configurations (averaged spectra approach, 
pixel-based approach, and spectra with or without prior log(1/R) 
transformation). 

From the perspective of any predictions, the Q2 values, as a measure 
of model performance, do not provide comprehensive information about 
the character of the trend. Therefore, an entire set of mean particle size 
predicted values were compared with the reference values. Fig. 5 pre-
sents the accuracy of the calibration models. 

The trends presented in Fig. 5a1 and b1 confirm the strong predictive 
power of the PLS models for estimating particle size based on hyper-
spectral images. Moreover, spectra derivative improves the predictions 
of particle size (see Fig. 5a2 and b2). The derivative emphasizes the 
spectral features of the signal and does not reduce the scattering. This is 
consistent with the observation drawn from Fig. 2, where plot loading 
vectors indicate spectral bands’ importance in explaining the scattering 
phenomena. Derivative preprocessing emphasize the structure of all 

spectral features, and thus, it increases model performance. 

4.6. Scattering and the spectral regions 

As is illustrated in Fig. 6, scattering had a different impact in the 
different spectral regions of the NIR range. This observation became 
apparent when the coefficients of determination and the RMSE values 
were presented for univariate models relating the size of the particles 
and signal intensity observed at a given wavelength. 

Large values of the coefficient of determination point out the spectral 
regions that explain the studied relationship to the largest extent. For 
both of the powdered polymers, the most significant spectral regions in 
terms of scattering prediction coincided with the occurrence of spectral 
bands. The corresponding models’ prediction errors (RMSE) were 
inversely proportional to the spectral intensities of the peaks and 
calculated R2 values. 

This demonstrates that in the NIR region, the wavelengths that have 
a high spectral intensity significantly contribute to predicting the scat-
tering effect. On the other hand, the importance of wavelengths is not 
linearly proportional to a given band’s intensity and the R2 plot did not 
resemble the corresponding sample’s spectrum. Even small peaks can 
strongly support the prediction of scattering. Therefore, any new scat-
tering correction methods should include information about the type of 
spectral pattern if the aim of the method is to reduce the scattering effect 

Table 1 
Coefficients of the determination (R2), root mean square error (RMSE), Q2 values, and the root mean square error of cross-validation (RMSECV), obtained for PLS 
models with six factors describing the size of particles in PPMA and PP fractions. The PLS models were constructed for differently preprocessed near-infrared spectra 
using either the pixel-based or mean spectra approaches.  

Approach Preprocessing PMMA PP 

R2 RMSE Q2 RMSECV R2 RMSE Q2 RMSECV 

Mean spectra Original spectra  0.9904  28.6  0.7933  132.7  0.9754  45.8  0.7038  158.9 
log(1/R)  0.9966  17.1  0.8372  117.8  0.9857  35.0  0.7747  138.6 
SG − 7,2,2*  0.9965  17.3  0.8513  112.6  0.9896  29.8  0.5776  189.7 
log(1/R) and SG − 7,2,2*  0.9992  8.2  0.9286  78.0  0.9916  26.7  0.7288  152.0  

Pixel-based approach Original spectra  0.9677  52.5  0.8554  111.0  0.9437  69.2  0.8671  106.4 
log(1/R)  0.9920  26.2  0.9420  70.3  0.9786  42.7  0.9377  72.9 
SG − 7,2,2*  0.9944  21.9  0.9872  33.0  0.9789  42.4  0.9559  61.3 
log(1/R) + SG − 7,2,2*  0.9977  13.9  0.9940  22.6  0.9839  37.0  0.9837  37.3  

* Window size, polynomial degree, and derivative order. 

(a) (b)

Fig. 4. The Q2 values as a function of the number of the PLS factors that were obtained for differently preprocessed spectra. The PLS models were constructed using a 
pixel-based approach based on the log(1/R) spectra that had been extracted from the hyperspectral images that described the PPMA (left column) and PP (right 
column) samples. The (x, y, z) values in the legend represent the window size (x), polynomial (y) and derivative order (z) for the SG method and the window size (x), 
gap (y) and derivative order (z) for the NW method. 
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(a1)

(a2)

(b1)

(b2)

Fig. 5. The relationship between the observed and predicted mean particle diameter for: (a) PMMA and (b) PP samples predicted with the PLS model using six PLS 
factors and based on (1) the original log(1/R) spectra, (2) spectra after log(1/R) and the second derivative with Savitsky-Golay smoothing (the second degree 
polynomial and window size equal to seven points). The diagonal lines in the figures represent the ideal situation when the particle size that was predicted using the 
PLS model matched the reference values. The coefficients of the determination for models a1, b1, a2, and b2 are equal to 0.992, 0.979, 0.998, 0.984, respectively. 

(a1) (b1)

Fig. 6. (a1) log(1/R) transformed averaged spectrum of the PPMA, coefficients of determination plotted as a function of the selected wavelengths for the construction 
of a univariate model to predict the average particle size and the corresponding RMSE values; (b1) log(1/R) transformed averaged spectrum of the PP, coefficients of 
determination plotted as a function of the selected wavelengths for the construction of a univariate model to predict the average particle size and the corresponding 
RMSE values. 
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efficiently. 

5. Conclusions 

Hyperspectral imaging can reveal the mean particle size of powder 
samples and the spatial variability and physical heterogeneity of solid 
samples. Such potential of NIR-HSI supports the construction of cali-
bration models that offer better particle size prediction compared to a 
single-spot NIR reflectance measurement. This NIR-HSI feature is further 
enhanced when samples are more heterogeneous. However, to construct 
a reliable model, a more advanced approach was considered. It included 
image preprocessing, selecting the region of interest and eliminating 
outlying pixels. Most of these pretreatment procedures can be auto-
mated for a specific sample type and can be performed with little effort. 
A logarithmic transformation and spectral derivation is beneficial to any 
NIR data and should be applied to the spectra before any model con-
struction – it does not reduce the scattering phenomena, but it highlights 
the NIR spectroscopic features. The most remarkable scattering effect 
was strongly related to the wavelengths that corresponded to the peaks 
in the NIR spectra of specific samples. Therefore, the development of a 
novel, efficient scattering correction method should incorporate infor-
mation about the recorded spectral patterns of solid samples. 
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