iDus 416 Series

30 x 3.8 mm / 2000 x 256 pixel
NIR Spectroscopy CCD

Features and Benefits

- **Low dark current**
 10x better than Back-Illuminated Deep-Depletion NIMO sensors, best SNR in the NIR

- **Peak QE up to 95%**
 Best detection capability in the NIR

- **15 µm pixels**
 Ideal for high resolution spectroscopy

- **30 mm wide sensor**
 Superior simultaneous band-pass capture

- **Fringe suppression technology as standard**
 Optical etaloning virtually eliminated

- **TE cooling down to -95ºC**
 Critical for elimination of dark current detection limit - no inconvenience associated with LN₂

- **UltraVac™**
 Critical for sustained vacuum integrity and to maintain unequalled cooling and QE performance year after year

- **USB 2.0 connection**
 Ideal for laptop operation
 Seamless operation alongside USB-based Shamrock spectrograph family

- **Compact and rugged platform**
 Ideal for OEM integration & laboratory setups

- **Solis software for Spectroscopy**
 Comprehensive, user-friendly interface for simultaneous detector & spectrograph control

- **Software Development Kit (SDK)**
 Ease of control integration into complex setups: Matlab, Labview, Visual Basic or C/C++

The most sensitive NIR CCD platform on the market

Andor’s new iDus 416 platform boasts a unique combination of very low dark noise and very high QE, offering unrivalled sensitivity in the near-infrared. This makes it the ideal detector for NIR Raman and Photoluminescence, reducing greatly acquisition times and removing the need for inconvenient LN₂ cooling.

The unique 2000 x 256, 15 µm pixel array allows extended, broadband and high resolution spectral acquisition, while the fringe suppression technology virtually eliminates the optical etaloning at the higher wavelengths.

With its compact form factor and USB 2.0 connectivity, the iDus 416 can be seamlessly integrated to Shamrock USB 2.0 spectrographs and controlled from a laptop. Andor’s UltraVac™ technology carries a unique track record when it comes to performance and reliability, maintaining superb performance year after year for both Research users and industrial integrators.

Specifications Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active pixels</td>
<td>2000 x 256</td>
</tr>
<tr>
<td>Pixel size (W x H)</td>
<td>15 x 15 µm</td>
</tr>
<tr>
<td>Image area</td>
<td>30 x 3.8 mm</td>
</tr>
<tr>
<td>Register well depth (typical)</td>
<td>300,000 e⁻</td>
</tr>
<tr>
<td>Maximum cooling</td>
<td>-95ºC</td>
</tr>
<tr>
<td>Maximum spectra per sec</td>
<td>30</td>
</tr>
<tr>
<td>Read noise</td>
<td>As low as 4 e⁻</td>
</tr>
<tr>
<td>Dark current</td>
<td>As low as 0.0006 e⁻/pixel/sec</td>
</tr>
</tbody>
</table>
Key Specifications

<table>
<thead>
<tr>
<th>Model number</th>
<th>DV416A-LDC-DD</th>
<th>DU416A-LDC-DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor options</td>
<td>LDC-DD: Back-Illuminated CCD, Deep-Depletion with anti-fringing, low dark current</td>
<td></td>
</tr>
<tr>
<td>Active pixels</td>
<td>3000 x 256</td>
<td></td>
</tr>
<tr>
<td>Pixel size</td>
<td>15 x 15 μm</td>
<td></td>
</tr>
<tr>
<td>Image area</td>
<td>30 x 3.8 mm with 100% fill factor</td>
<td></td>
</tr>
<tr>
<td>Minimum temperatures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air cooled</td>
<td>-55°C</td>
<td>-80°C</td>
</tr>
<tr>
<td>-65°C</td>
<td>-90°C</td>
<td></td>
</tr>
<tr>
<td>-70°C</td>
<td>-95°C</td>
<td></td>
</tr>
<tr>
<td>Coolant recirculator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolant chiller, coolant @ 10 °C, 0.75 l/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Current e/pixel/sec @ max cooling</td>
<td>0.025</td>
<td>0.0006</td>
</tr>
<tr>
<td>Max spectra per second</td>
<td>30 (Full Vertical Binning)</td>
<td></td>
</tr>
<tr>
<td>System window type</td>
<td>Fused silica window, 'VIS-NIR Enhanced', wedged (AR coated on both sides, optimized at 900 nm) Other broadband UV-NIR options available on request.</td>
<td></td>
</tr>
<tr>
<td>Blemish specifications</td>
<td>Grade 1 sensor from supplier. Camera blemishes as defined by Andor Grade A</td>
<td>https://andor.oxinst.com/learning/view/article/ccd-blemishes-and-non-uniformities</td>
</tr>
</tbody>
</table>

Advanced Specifications

Image well depth	150,000 e⁻⁻⁻		
Register well depth	300,000 e⁻⁻⁻		
Read noise (e⁻⁻⁻)	33 kHz	50 kHz	100 kHz
4	4.5	5	
Sensitivity (e⁻⁻⁻/count)	33 kHz	50 kHz	100 kHz
Pre-amplifier Gain PAG 0	0.7	1.5	5.0
Pre-amplifier Gain PAG 1	-	0.85	3.4
Linearity	Better than 99%		
Digitization	16 bit		
Vertical clock speed	32 and 64 μs (software selectable)		

Have you found what you are looking for?

Need a larger sensor for multi-track spectroscopy? The iDus 420 series is available with 26.6 x 6.6 mm format and 1024 x 255 pixels.

Need to work further into the NIR? The iDus InGaAs series, with up to 1024 pixel linear array with transmission to 2.2 μm.

Need a faster or more sensitive CCD? The Newton series offers over 1,600 spectra per second and EM technology.

Need more UV sensitivity? The iDus 420 offers a range of UV optimized sensors.

Need a customized version? Please contact us to discuss our Customer Special Request options.

The iDus series combines seamlessly with Andor’s research grade Shamrock Czerny-Turner spectrographs.
Dark Current

![Dark Current Graph](image)

Quantum Efficiency Curves

25°C

![Quantum Efficiency Curves 25°C Graph](image)

-95°C

![Quantum Efficiency Curves -95°C Graph](image)

Typical Setup

![Typical Setup Diagram](image)

Customizable & Flexible

For industrial applications, the iDus 416 offers various levels of customization based around the following:

- Lockable USB
- Alternative water connections (90 degrees)
- Chassis mounting options

Please contact us to discuss your specific requirements.
Step 1. Choose the cooling option

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard cooling: (Air cooled: -55°C, Coolant recirculator: -65°C, Coolant chiller, coolant @ 10°C, 0.75 l/min: -70°C)</td>
<td>DV</td>
</tr>
<tr>
<td>Deep cooling: (Air cooled: -80°C, Coolant recirculator: -90°C, Coolant chiller, coolant @ 10°C, 0.75 l/min: -95°C)</td>
<td>DU</td>
</tr>
</tbody>
</table>

Step 2. Select an alternative camera window (optional)

The standard window has been selected to satisfy most applications. However, other options are available. The alternative camera window code must be specified at time of ordering.

To view and select other window options please refer to the 'Camera Windows Supplementary Specification Sheet' which gives the transmission characteristics, product codes and procedure for entering the order. Further detailed information on the windows can be found in the Technical note – 'Camera Windows: Optimizing for Different Spectral Regions'.

Step 3. Select the required accessories and adapters

<table>
<thead>
<tr>
<th>Description</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant re-circulator for enhanced cooling performance</td>
<td>XW-RECR</td>
</tr>
<tr>
<td>Oasis 160 Ultra Compact Chiller Unit (tubing to be ordered separately)</td>
<td>ACC-XW-CHIL-160</td>
</tr>
<tr>
<td>6 mm tubing options for ACC-XW-CHIL-160 (2x2.5 m or 2x5 m lengths)</td>
<td>ACC-6MM-TUBING-2X2.5/ACC-6MM-TUBING-2XS</td>
</tr>
<tr>
<td>C-mount lens adaptor</td>
<td>LM-C</td>
</tr>
<tr>
<td>F-mount lens adaptor</td>
<td>LM-NIKON-F</td>
</tr>
<tr>
<td>Nikon F-mount lens adaptor with shutter</td>
<td>LMS-NIKON-F-NS25B</td>
</tr>
<tr>
<td>Shutter Driver for NS25B Bistable Shutter (not needed for Kymera/Shamrock spectrographs)</td>
<td>ACC-SHT-NS25B</td>
</tr>
<tr>
<td>Bistable Shutter, Standalone (not needed for Kymera/Shamrock spectrographs)</td>
<td>ACC-SHT-NS25B</td>
</tr>
</tbody>
</table>

Spectrograph Compatibility

The iDus series is fully compatible with Andor’s Kymera and Shamrock spectrographs (163 - 750 nm focal lengths). Spectrograph mounting flanges and software control are available for a wide variety of 3rd party spectrographs including McPherson (including 1 m and greater focal length option), JY/Horiba (excluding USB models), PI/Acton, Chromex/Bruker, Oriel/Newport, Photon Design, Dongwoo, Bentham, Solar TII and others.

Step 4. Select the required software

The iDus requires at least one of the following software options:

Solis for Spectroscopy A 32-bit and fully 64-bit enabled application for Windows (7, 8, 8.1 and 10) offering rich functionality for data acquisition and processing. AndorBasic provides macro language control of data acquisition, processing, display and export. Control of Andor Kymera and Shamrock spectrographs and a very wide range of 3rd party spectrographs is also available, see list in step 4 above.

Andor SDK A software development kit that allows you to control the Andor range of cameras from your own application. Available as 32/64-bit libraries for Windows (7, 8, 8.1 and 10) and Linux. Compatible with C/C++, C#, Delphi, VB.NET, LabVIEW and Matlab.
Connecting to the iDus

Camera Control
Connector type: USB 2.0

TTL / Logic
Connector type: SMB, provided with SMB - BNC cable
Fire (Output), External Trigger (Input), Shutter (Output)

PC connector
Compatible with Fischer SC102A054-130
1 = Shutter (TTL), 2 = PC Clock, 3 = PC Data, 4 = +5 Vdc, 5 = Ground

Minimum cable clearance required at rear of camera
90 mm

Applications Guide

<table>
<thead>
<tr>
<th></th>
<th>DV 416</th>
<th>DU 416</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption/Transmittance/Reflection</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>Fluorescence & Luminescence (VIS)</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>Photoluminescence</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>Raman Spectroscopy (488, 514, 532, 633, 785, 830 nm)</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>Plasmonics</td>
<td>⬜</td>
<td>⬜</td>
</tr>
</tbody>
</table>

○ = Suitable ● = Optimum

Product Drawings

Dimensions in mm [inches]
Order Today
Need more information? At Andor we are committed to finding the correct solution for you. With a dedicated team of technical advisors, we are able to offer you one-to-one guidance and technical support on all Andor products. For a full listing of our local sales offices, please see: andor.com/contact

Our regional headquarters are:

Europe
Belfast, Northern Ireland
Phone +44 (28) 9023 7126
Fax +44 (28) 9031 0792

Japan
Tokyo
Phone +81 (3) 6732 8968
Fax +81 (3) 6732 8939

North America
Concord, MA, USA
Phone +1 (860) 290 9211
Fax +1 (860) 290 9566

China
Beijing
Phone +86 (10) 8271 9066
Fax +86 (10) 8271 9055

Footnotes: Specifications are subject to change without notice

1. Assembled in a state-of-the-art facility, Andor’s UltraVac™ vacuum process combines a permanent hermetic vacuum seal (no o-rings), with a stringent protocol and proprietary materials to minimize outgassing. Outgassing is the release of trapped gases that would otherwise degrade cooling performance and potentially cause sensor failure.
2. Figures are typical unless otherwise stated.
3. Edge pixels may exhibit a partial response.
4. Minimum temperatures listed are typical values with ambient temperature of 25°C.
5. Based on a Horizontal Pixel Readout of 100 kHz and a vertical pixel shift of 32 µs.
6. Readout Noise is for the entire system. It is a combination of CCD readout noise and A/D noise. Measurement is for Single Pixel readout with the CCD at a temperature of -50°C and minimum exposure time under dark conditions. Noise is measured at the highest available pre-amplifier gain for each speed.
7. Linearity is measured from a plot of counts vs exposure time under constant photon flux up to the saturation point of the system.
8. Vertical speeds are software selectable, and designed to give optimum Charge Transfer Efficiency (CTE) at 32 µs vertical pixel shift, some decrease in CTE may be observed at faster shift speeds.
9. The graph shows typical dark current level as a function of temperature. The dark current measurement is averaged over the CCD area excluding any regions of blemishes. The ‘BR-DD NIMO’ and ‘BV’ dark current curves are shown for comparison purposes only, and have been scaled to account for pixel size differences between the iDus 401 and iDus 416 sensors.
10. Quantum efficiency of the sensor as supplied by the sensor manufacturer.

Items shipped with your camera:
1x 2m BNC - SMB connection cable
1x 3m USB 2.0 cable Type A to Type B
1x Set of hex keys (7/64" & 3/32")
1x Power supply with mains cable
1x Quick Start guide
1x CD containing Andor user guides
1x Individual system performance booklet
1x CD containing either Solis software or SDK (if ordered)

Minimum Computer Requirements:
- 3.0 GHz single core or 2.4 GHz multi core processor
- 2 GB RAM
- 100 MB free hard disc to install software (at least 1 GB recommended for data spooling)
- USB 2.0 High Speed Host Controller capable of sustained rate of 40 MB/s
- Windows (7, 8, 8.1 and 10) or Linux

Operating & Storage Conditions
- Operating Temperature: 0°C to 30°C ambient
- Relative Humidity: < 70% (non-condensing)
- Storage Temperature: -25°C to 50°C

Power Requirements
- 100 - 240 VAC, 50 - 60 Hz
- Power consumption: 42W (max)

Windows is a registered trademark of Microsoft Corporation.
Labview is a registered trademark of National Instruments.
Matlab is a registered trademark of The MathWorks Inc.