

Model 335 features

- Operates down to 300 mK with appropriate NTC RTD sensors
- Two sensor inputs
- Two configurable PID control loops providing 50 W and 25 W or 75 W and 1 W
- Autotuning automatically calculates PID parameters
- Automatically switch sensor inputs using zones to allow continuous measurement and control from 300 mK to 1505 K
- Custom display set-up allows you to label each sensor input
- USB and IEEE-488 interfaces
- Supports diode, RTD, and thermocouple temperature sensors
- Sensor excitation current reversal eliminates thermal EMF errors for resistance sensors
- ±10 V analog voltage output, alarms, and relays
- CE certification
- Full 3 year standard warranty

Quantum <mark>Design</mark> 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

Introduction

Designed with the user and ease of use in mind, the Model 335 temperature controller offers many user-configurable features and advanced functions that until now have been reserved for more expensive, high-end temperature controllers. The Model 335 is the first two-channel temperature controller available with user configurable heater outputs delivering a total of 75 W of low noise heater power—50 W and 25 W, or 75 W and 1 W. With that much heater power packed into an affordable half-rack sized instrument, the Model 335 gives you more power and control than ever. The Model 335 supports the industry's most advanced line of cryogenic temperature sensors as manufactured by Lake Shore, including diodes, resistance temperature detectors (RTDs), and thermocouples. The controller's zone tuning feature allows you to measure and control temperatures seamlessly from 300 mK to over 1,500 K. This feature automatically switches temperature sensor inputs when your temperature range goes beyond the useable range of a given sensor. You'll never again have to be concerned with temperature sensor over or under errors and measurement continuity issues.

Control outputs are equipped with both hardware and software features allowing you, and not your temperature controller, to easily control your experiments. Output one functions as a current output while output two can be configured in either current or voltage mode. With output two in voltage mode, it functions as a ±10 V analog output while still providing 1 W of heater power and full closed loop proportional-integral-derivative (PID) control capability. Alarms and relays are included to help automate secondary control functions. The improved autotuning feature of the Model 335 can be used to automatically calculate PID control parameters, so you spend less time tuning your controller and more time conducting experiments.

The intuitive front panel layout and keypad logic, bright vacuum fluorescent display, and LED indicators enhance the user-friendly front panel interface of the Model 335. Four standard display modes are offered to accommodate different instrument configurations and user preferences. Say goodbye to sticky notes and hand written labels, as the ability to custom label sensor inputs eliminates the guesswork in remembering or determining the location to which a sensor input is associated. These features, combined with USB and IEEE-488 interfaces and intuitive menu structure and logic supports efficiency and ease of use. As a replacement to our popular Model 331 and 332 temperature controllers, the Model 335 offers software emulation modes for literal drop-in compatibility. The commands you are accustomed to sending to the Model 331 and 332 will either be interpreted directly or translated to the most appropriate Model 335 setting. The Model 335 comes standard-equipped with all of the functionality of the controllers it replaces, but offers additional features that save you time and money.

With the Model 335, you get a temperature controller you control from the world leader in cryogenic thermometry.

Sensor inputs

The Model 335 offers two standard sensor inputs that are compatible with diode and RTD temperature sensors. The field-installable Model 3060 option adds thermocouple functionality to both inputs.

Sensor inputs feature a high-resolution 24-bit analog-to-digital converter and each of the two powered outputs function as separate current sources. Both sensor inputs are optically isolated from other circuits to reduce noise and to deliver repeatable sensor measurements. Current reversal eliminates thermal electromagnetic field (EMF) errors in resistance sensors. Ten excitation currents facilitate temperature measurement and control down to 300 mK using appropriate negative temperature coefficient (NTC) RTDs. Autorange mode automatically scales excitation current in NTC RTDs to reduce self heating at low temperatures as sensor resistance changes by many orders of magnitude. Temperatures down to 1.4 K can be measured and controlled using silicon or GaAlAs diodes. Software selects the appropriate excitation current and signal gain levels when the sensor type is entered via the instrument front panel. To increase your productivity, the unique zone setting feature automatically switches sensor inputs, enabling you to measure temperatures from 300 mK to over 1,500 K without interrupting your experiment.

Quantum <mark>Design</mark> 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

The Model 335 includes standard temperature sensor response curves for silicon diodes, platinum RTDs, ruthenium oxide RTDs, and thermocouples. Non-volatile memory can also store up to 39 200-point CalCurves for Lake Shore calibrated temperature sensors or user curves. A built-in SoftCal algorithm can be used to generate curves for silicon diodes and platinum RTDs that can be stored as user curves. Temperature sensor calibration data can be easily loaded into the Model 335 temperature controller and manipulated using the Lake Shore curve handler software program.

Temperature control

Providing a total of 75 W of heater power, the Model 335 is the most powerful half rack temperature controller available. Designed to deliver very clean heater power, precise temperature control is ensured throughout your full scale temperature range for excellent measurement reliability, efficiency and throughput. Two independent PID control outputs can be configured to supply 50 W and 25 W or 75 W and 1 W of heater power. Precise control output is calculated based on your temperature setpoint and feedback from the control sensor. Wide tuning parameters accommodate most cryogenic cooling systems and many high-temperature ovens commonly used in laboratories. PID values can be manually set for fine control or the improved autotuning feature can automate the tuning process.

The Model 335 autotuning method calculates PID parameters and provides feedback to help build zone tables. The setpoint ramp feature provides smooth, continuous setpoint changes and predictable approaches to setpoint without the worry of overshoot or excessive settling times. The instrument's zone tuning feature automatically switches temperature sensor inputs when your temperature range goes beyond the useable range of a given sensor. This feature combined with the instrument's ability to scale the sensor excitation through ten pre-loaded current settings allows the Model 335 to provide continuous measurement and control from 300 mK to 1505 K.

Both control outputs are variable DC current sources referenced to chassis ground. As a factory default, outputs 1 and 2 provide 50 W and 25 W of continuous power respectively, both to a 50 Ω or 25 Ω load. For increased functionality, output 2 can also be set to voltage mode. When set to voltage mode, it functions as a ±10 V analog output while still providing 1 W of heater power and full closed loop PID control capability. While in this mode, output 1 can provide up to 75 W of heater power to a 25 Ω load.

Temperature limit settings for inputs are provided as a safeguard against system damage. Each input is assigned a temperature limit, and if any input exceeds that limit, both control channels are automatically disabled.

Interface

The Model 335 is standard equipped with universal serial bus (USB) and parallel (IEEE-488) interfaces. In addition to gathering data, nearly every function of the instrument can be controlled via computer interface. You can download the Lake Shore curve handler software program to your computer to easily enter and manipulate sensor calibration curves for storage in the instrument's nonvolatile memory.

The USB interface emulates an RS-232C serial port at a fixed 57,600 baud rate, but with the physical plug-ins of a USB. It also allows you to download firmware upgrades, ensuring the most current firmware version is loaded into your instrument without having to physically change your instrument.

Both sensor inputs are equipped with a high and low alarm which offers latching and nonlatching operation. The two relays can be used in conjunction with the alarms to alert you of a fault condition and perform simple on-off control. Relays can be assigned to any alarm or operated manually.

The ± 10 V analog voltage output can be configured to send a voltage proportional to temperature to a strip chart recorder or data acquisition system. You may select the scale and data sent to the output, including temperature or sensor units.

1 Sensor input connectors

- 2 Terminal block (analog outputs/ relavs)
- 3 USB interface
- 4 IEEE-488 interface
- 5 Line input assembly
- 6 Output 2 heater
- 7 Output 2 neater
- 8 Thermocouple option inputs

Model 335 rear panel

Quantum <mark>Design</mark> 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

Configurable display

The Model 335 offers a bright, vacuum fluorescent display that simultaneously displays up to four readings. You can display both control loops, or if you need to monitor just one input, you can display just that one in greater detail. Or you can custom configure each display location to suit your experiment. Data from any input can be assigned to any of the locations, and your choice of temperature sensor units can be displayed. For added convenience, you can also custom label each senor input, eliminating the guesswork in remembering or determining the location to which a sensor input is associated.

Ĥ÷	5.202k	8:	34.635ĸ
1:	5.200ĸ		13% Med

Two input/one loop display with labels

Standard display option featuring two inputs and associated outputs.

Custom display with labels

Reading locations can be user configured to accommodate application needs. Here, the input names are shown above the measurement readings along with the designated input letters.

Intuitive menu structure

Logical navigation allows you to spend more time on research and less time on setup.

Model 3060 thermocouple input option

The field installable Model 3060 thermocouple input option adds thermocouple functionality to both inputs. While the option can be easily removed, this is not necessary as the standard inputs remain fully functional when they are not being used to measure thermocouple temperature sensors. Calibration for the option is stored on the card so it can be installed in the field and used with multiple Model 335 temperature controllers without recalibration.

Sensor selection

Sensor temperature range (sensors sold separately)

		Model	Useful range	Magnetic field use
Diodes	Silicon diode	DT-670-SD	1.4 K to 500 K	$T \ge 60 \text{ K \& B} \le 3 \text{ T}$
	Silicon diode	DT-670E-BR	30 K to 500 K	$T \ge 60 \text{ K \& B} \le 3 \text{ T}$
	Silicon diode	DT-414	1.4 K to 375 K	$T \ge 60 \text{ K \& B} \le 3 \text{ T}$
	Silicon diode	DT-421	1.4 K to 325 K	$T \ge 60 \text{ K \& B} \le 3 \text{ T}$
	Silicon diode	DT-470-SD	1.4 K to 500 K	$T \ge 60 \text{ K \& B} \le 3 \text{ T}$
	Silicon diode	DT-471-SD	10 K to 500 K	$T \ge 60 \text{ K \& B} \le 3 \text{ T}$
	GaAlAs diode	TG-120-P	1.4 K to 325 K	$T>4.2$ K & B ≤5 T
	GaAlAs diode	TG-120-PL	1.4 K to 325 K	$T > 4.2 \text{ K \& B} \le 5 \text{ T}$
	GaAlAs diode	TG-120-SD	1.4 K to 500 K	$T>4.2$ K & B ≤5 T
Positive temperature	100 Ω platinum	PT-102/3	14 K to 873 K	$T > 40 \text{ K \& B} \le 2.5 \text{ T}$
coefficient RTDs	100 Ω platinum	PT-111	14 K to 673 K	$T > 40 \text{ K \& B} \le 2.5 \text{ T}$
	Rhodium-iron	RF-800-4	1.4 K to 500 K	$T > 77 K \& B \le 8 T$
	Rhodium-iron	RF-100T/U	1.4 K to 325 K	$T>77~K\&B\leq 8~T$
Negative	Cernox™	CX-1010	0.3 K to 325 K ¹	$T > 2 K \& B \le 19 T$
temperature	Cernox™	CX-1030-HT	0.3 K to 420 K ^{1, 3}	$T > 2 K \& B \le 19 T$
coefficient RTDs	Cernox™	CX-1050-HT	1.4 K to 420 K ¹	$T > 2 K \& B \le 19 T$
	Cernox™	CX-1070-HT	4 K to 420 K ¹	$T > 2 K \& B \le 19 T$
	Cernox™	CX-1080-HT	20 K to 420 K ¹	$T > 2 K \& B \le 19 T$
	Germanium	GR-300-AA	0.35 K to 100 K ³	Not recommended
	Germanium	GR-1400-AA	1.8 K to 100 K ³	Not recommended
	Carbon-glass	CGR-1-500	1.4 K to 325 K	$T > 2 K \& B \le 19 T$
	Carbon-glass	CGR-1-1000	1.7 K to 325 K ²	$T > 2 K \& B \le 19 T$
	Carbon-glass	CGR-1-2000	2 K to 325 K ²	$T > 2 K \& B \le 19 T$
	Rox™	RX-102	0.3 K to 40 K ³	$T > 2 K \& B \le 10 T$
	Rox™	RX-103	1.4 K to 40 K	$T > 2 K \& B \le 10 T$
	Rox™	RX-202	0.3 K to 40 K ³	$T > 2 K \& B \le 10 T$
Thermocouples	Туре К	9006-006	3.2 K to 1505 K	Not recommended
Option-3060	Type E	9006-004	3.2 K to 934 K	Not recommended
	Chromel- AuFe 0.07%	9006-002	1.2 K to 610 K	Not recommended

¹ Non-HT version maximum temperature: 325 K

² Low temperature limited by input resistance range

³ Low temperature specified with self-heating error: \leq 5 mK

Silicon diodes are the best choice for general cryogenic use from 1.4 K to above room temperature. Silicon diodes are economical to use because they follow a standard curve and are interchangeable in many applications. They are not suitable for use in ionizing radiation or magnetic fields.

Cernox[™] thin-film RTDs offer high sensitivity and low magnetic field-induced errors over the 0.3 K to 420 K temperature range. Cernox sensors require calibration.

Platinum RTDs offer high uniform sensitivity from 30 K to over 800 K. With excellent reproducibility, they are useful as thermometry standards. They follow a standard curve above 70 K and are interchangeable in many applications.

Quantum <mark>Design</mark> 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

Typical sensor performance

	Example Lake Shore sensor	Temperature	Nominal resistance/ voltage	Typical sensor sensitivity⁴	Measurement resolution: temperature equivalents	Electronic accuracy: temperature equivalents	Temperature accuracy including electronic accuracy, CalCurve™, and calibrated sensor	Electronic control stability ⁵ : temperature equivalents
Silicon diode	DT-670-C0-13	1.4 K	1.664 V	-12.49 mV/K	0.8 mK	±13 mK	±25 mK	±1.6 mK
	with 1.4H	77 K	1.028 V	-1.73 mV/K	5.8 mK	±76 mK	±98 mK	±11.6 mK
	calibration	300 K	0.5596 V	-2.3 mV/K	4.3 mK	±47 mK	±79 mK	±8.7 mK
		500 K	0.0907 V	-2.12 mV/K	4.7 mK	±40 mK	±90 mK	±9.4 mK
Silicon diode	DT-470-SD-13	1.4 K	1.6981 V	-13.1 mV/K	0.8 mK	±13 mK	±25 mK	±1.6 mK
	with 1.4H	77 K	1.0203 V	-1.92 mV/K	5.2 mK	±68 mK	±90 mK	±10.4 mK
	calibration	300 K	0.5189 V	-2.4 mV/K	4.2 mK	±44 mK	±76 mK	±8.4 mK
		475 K	0.0906 V	-2.22 mV/K	4.5 mK	±38 mK	±88 mK	±9 mK
GaAlAs diode	TG-120-SD	1.4 K	5.3909 V	-97.5 mV/K	0.2 mK	±8.8 mK	±21 mK	±0.4 mK
	with 1.4H	77 K	1.4222 V	-1.24 mV/K	16 mK	±373 mK	±395 mK	±32 mK
	calibration	300 K	0.8978 V	-2.85 mV/K	7 mK	±144 mK	±176 mK	±14 mK
100 Ω platinum RTD	PT-103 with	475 K	0.3778 V	-3.15 mV/K	6.4 mK	±114 mK	±164 mK	±13 mK ±2.2 mK
500Ω full scale	14J calibration	30 K	3.660 Ω	0.191 Ω/K	1.1 mK	±13 mK	±23 mK	
	145 Galibration	77 K	20.38 Ω	0.423 Ω/K	0.5 mK	±10 mK	±22 mK	±1.0 mK
		300 K	110.35 Ω	0.387 Ω/K	5.2 mK	±39 mK	±62 mK	±10.4 mK
• TM		500 K	185.668 Ω	0.378 Ω/K	5.3 mK	±60 mK	±106 mK	±10.6 mK
Cernox™	CX-1010-SD	0.3 K	2322.4 Ω	-10785 Ω/K	8.5 µK	±0.1 mK	±3.6 mK	±17 μK
	with 0.3L calibration	0.5 K	1248.2 Ω	-2665.2 Ω/K	26 µK	±0.2 mK	±4.7 mK	±52 μΚ
	Calibration	4.2 K	277.32 Ω	-32.209 Ω/K	140 µK	±3.8 mK	±8.8 mK	±280 μK
	300 K	30.392 Ω	-0.0654 Ω/K	23 mK	±339 mK	±414 mK	±46 mK	
Cernox™	CX-1050-SD-HT ⁶	1.4 K	26566 Ω	-48449 Ω/K	20 µK	±0.3 mK	±5.3 mK	±40 μK
	with 1.4M	4.2 K	3507.2 Ω	-1120.8 Ω/K	196 µK	±2.1 mK	±7.1 mK	±392 μK
	calibration	77 K	205.67 Ω	-2.4116 Ω/K	1.9 mK	±38 mK	±54 mK	±3.8 mK
		420 K	45.03 Ω	-0.0829 Ω/K	18 mK	±338 mK	±403 mK	±36 mK
Germanium	GR-300-AA	0.35 K	18225 Ω	-193453 Ω/K	4 µK	±48 μK	±4.2 mK	±8 μK
	with 0.3D	1.4 K	449 Ω	-581 Ω/K	41 µK	±481 μK	±4.7 mK	±82 μK
	calibration	4.2 K	94 Ω	-26.6 Ω/K	56 µK	±1.8 mK	±6.8 mK	±112 μK
		100 K	2.7 Ω	-0.024 Ω/K	6.3 mK	±152 mK	±175 mK	±12.6 mK
Germanium	GR-1400-AA	1.8 K	15288 Ω	-26868 Ω/K	28 µK	±302 μK	±4.5 mK	±56 μK
	with 1.4D	4.2 K	1689 Ω	-862 Ω/K	91 µK	±900 μK	±5.1 mK	±182 μK
	calibration	10 K	253 Ω	-62.0 Ω/K	73 µK	±1.8 mK	±6.8 mK	±146 µK
		100 K	2.8 Ω	-0.021 Ω/K	7.1 mK	±177 mK	±200 mK	±14.2 mK
Carbon-glass	CGR-1-500	1.4 K	103900 Ω	-520000 Ω/K	13 µK	±0.1 mK	±4.1 mK	±26 μK
·	with 1.4L	4.2 K	584.6 Ω	-422.3 Ω/K	63 μK	±0.8 mK	±4.8 mK	±126 μK
	calibration	77 K	14.33 Ω	-0.098 Ω/K	4.6 mK	±108 mK	±133 mK	±9.2 mK
		300 K	8.55 Ω	-0.0094 Ω/K	16 mK	±760 mK	±865 mK	±32 mK
Rox™	RX-102A-AA	0.5 K	3701 Ω	-5478 Ω/K	41 μK	±0.5 mK	±5 mK	±82 μK
-	with 0.3B	1.4 K	2005 Ω	-667 Ω/K	128 µK	±1.4 mK	±6.4 mK	±256 μK
	calibration	4.2 K	1370 Ω	-80.3 Ω/K	902 µK	±8 mK	±24 mK	±1.8 mK
			1370 Ω 1049 Ω					
Thermocouple	Type K	40 K 75 K		-1.06 Ω/K	62 mK 26 mK	±500 mK ±0.25 K ⁷	±537 mK Calibration not available	±124 mK ±52 mK
50 mV	Type K		-5862.9 μV	15.6 μV/K			from Lake Shore	
Option—3060		300 K	1075.3 µV	40.6 µV/K	10 mK	±0.038 K ⁷		±20 mK
,		600 K	13325 µV	41.7 μV/K	10 mK	±0.184 K ⁷		±20 mK
		1505 K	49998.3 µV	36.006 µV/K	11 mK	±0.73 K ⁷		±22 mK

⁴ Typical sensor sensitivities were taken from representative calibrations for the sensor listed

⁵ Control stability of the electronics only, in an ideal thermal system

⁶ Non-HT version maximum temperature: 325 K

⁷ Accuracy specification does not include errors from room temperature compensation

Quantum Design 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

Model 335 Specifications

Input specifications

	Sensor temperature coefficient	Input range	Excitation current	Display resolution	Measurement resolution	Electronic accuracy ⁶	Measurement temperature coefficient	Electronic control stability ¹
Diode	Negative	0 V to 2.5 V	10 µA ±0.05% ^{2,3}	100 µV	10 µV	±80 μV ±0.005% of rda	(10 µV + 0.0005% of rdg)/°C	±20 μV
		0 V to 10 V	10 µA ±0.05% ^{2,3}	1 mV	20 µV	±320 µV ±0.01% of rdg	(20 µV + 0.0005% of rdg)/°C	±40 μV
PTC RTD	Positive	$0~\Omega$ to $10~\Omega$	1 mA4	1 mΩ	0.2 mΩ	±0.002 Ω ±0.01% of rdg	(0.01 m Ω + 0.001% of rdg)/°C	±0.4 mΩ
		0 Ω to 30 Ω	1 mA4	1 mΩ	0.2 mΩ	±0.002 Ω ±0.01% of rdg	$(0.03 \text{ m}\Omega + 0.001\% \text{ of rdg})/^{\circ}\text{C}$	±0.4 mΩ
		0 Ω to 100 Ω	1 mA4	10 mΩ	2 mΩ	±0.004 Ω ±0.01% of rdg	(0.1 m Ω + 0.001% of rdg)/°C	±4 mΩ
		0 Ω to 300 Ω	1 mA4	10 mΩ	2 mΩ	±0.004 Ω ±0.01% of rdg	(0.3 m Ω + 0.001% of rdg)/°C	±4 mΩ
		0 Ω to 1 kΩ	1 mA4	100 mΩ	20 mΩ	±0.04 Ω ±0.02% of rdg	(1 m Ω + 0.001% of rdg)/°C	±40 mΩ
		0 Ω to 3 k Ω	1 mA4	100 mΩ	20 mΩ	±0.04 Ω ±0.02% of rdg	(3 m Ω + 0.001% of rdg)/°C	±40 mΩ
		0 Ω to 10 kΩ	1 mA4	1 Ω	200 mΩ	±0.4 Ω ±0.02% of rdg ±0.002 Ω	$(10 \text{ m}\Omega + 0.001\% \text{ of rdg})/^{\circ}\text{C}$	±400 mΩ
NTC RTD 10 mV	Negative	$0~\Omega$ to $10~\Omega$	1 mA4	1 mΩ	0.15 mΩ	±0.002 Ω ±0.06% of rdg	(0.01 m Ω + 0.001% of rdg)/°C	±0.3 mΩ
		0 Ω to 30 Ω	300 μA⁴	1 mΩ	0.45 mΩ	±0.002 Ω ±0.06% of rdg	(0.03 m Ω + 0.0015% of rdg)/°C	±0.9 mΩ
		0 Ω to 100 Ω	100 µA⁴	10 mΩ	1.5 mΩ	±0.01 Ω ±0.04% of rdg	(0.1 m Ω + 0.001% of rdg)/°C	±3 mΩ
		0 Ω to 300 Ω	30 µA⁴	10 mΩ	4.5 mΩ	±0.01 Ω ±0.04% of rdg	$(0.3 \text{ m}\Omega + 0.0015\% \text{ of rdg})/^{\circ}\text{C}$	±9 mΩ
		0 Ω to 1 kΩ	10 μA ⁴	100 mΩ	15 mΩ +0.002% of rdg	±0.1 Ω ±0.04% of rda	(1 m Ω + 0.001% of rdg)/°C	±30 mΩ ±0.004% of rda
		0 Ω to 3 kΩ	3 μA ⁴	100 mΩ	45 mΩ +0.002% of rdg	±0.1 Ω ±0.04% of rda	(3 mΩ + 0.0015% of rdg)/°C	±90 mΩ ±0.004% of rdg
		0 Ω to 10 kΩ	1 µA⁴	1Ω	150 mΩ +0.002% of rdg	±1.0 Ω ±0.04% of rdg	(10 mΩ + 0.001% of rdg)/°C	±300 mΩ ±0.004% of rda
		0 Ω to 30 kΩ	300 nA⁴	1Ω	450 mΩ +0.002% of rdg	±2.0 Ω ±0.04% of rda	$(30 \text{ m}\Omega + 0.0015\% \text{ of rdg})/^{\circ}\text{C}$	$\pm 900 \text{ m}\Omega$ $\pm 0.004\% \text{ of rdg}$
		0 Ω to 100 kΩ	100 nA⁴	10 Ω	1.5 Ω +0.005% of rdg	±10.0 Ω ±0.04% of rdg	$(100 \text{ m}\Omega + 0.002\% \text{ of rdg})/^{\circ}\text{C}$	$\pm 3 \Omega \pm 0.01\%$ of rdg
Thermocouple Option—3060	Positive	±50 mV	NA	1 µV	0.4 µV	±1 µV ±0.05% of rdg⁵	(0.1 μV + 0.001% of rdg)/°C	±0.8 μV

¹ Control stability of the electronics only, in ideal thermal system

² Current source error has negligible effect on measurement accuracy

³ Diode input excitation can be set to 1 mA

⁴ Current source error is removed during calibration 5 Accuracy specification does not include errors from room temperature compensation

Accuracy at T_{cal}, typically 23.5 °C ±1.5 °C

Sensor input configuration

	Diode/RTD	Thermocouple
Measurement type	4-lead differential	2-lead differential, room
		temperature compensated
Excitation	Constant current with current	NA
	reversal for RTDs	
Supported sensors	Diodes: Silicon, GaAlAs	Most thermocouple types
	RTDs: 100 Ω Platinum,	
	1000 Ω Platinum,	
	Germanium, Carbon-Glass,	
	Cernox [™] , and Rox [™]	
Standard curves	DT-470, DT-670, DT-500-D,	Type E, Type K, Type T,
	DT-500-E1, PT-100, PT-1000,	AuFe 0.07% vs. Cr,
	RX-102A, RX-202A	AuFe 0.03% vs. Cr
Input connector	6-pin DIN	Screw terminals in a ceramic
		isothermal block

Thermometry

Number of inputs 2

Input configuration Inputs can be configured from the front panel to accept any of the supported input types. Thermocouple inputs require an optional input card that can be

Supported input types. Thermocouple inputs require an optional input card that can be installed in the field. Once installed the thermocouple input can be selected from the front panel like any other input type.
 Isolation Sensor inputs optically isolated from other circuits but not each other A/D resolution 24-bit
 Input accuracy Sensor dependent, refer to Input Specifications table

Measurement resolution Sensor dependent, refer to Input Specifications table

Maximum update rate 10 rdg/s on each input, 5 rdg/s when configured as 100 kΩ NTC RTD with reversal on

Autorange Automatically selects appropriate NTC RTD or PTC RTD range

User curves Room for 39 200-point CalCurves[™] or user curves SoftCall[®] Improves accuracy of DT-470 diode to ± 0.25 K from 30 K to 375 K; improves accuracy of platinum RTDs to ± 0.25 K from 70 K to 325 K; stored as user curves Math Maximum and minimum

Filter Averages 2 to 64 input readings

Control

Control outputs 2

Heater outputs

Control type Closed loop digital PID with manual heater output or open loop; warm up mode (output 2 only) Update rate 10/s

Tuning Autotune (one loop at a time), PID, PID zones lent, see Input Specifications table

Control	st	abi	ility	Sensor	depend

- PID control settings
 - Proportional (gain) 0 to 1000 with 0.1 setting resolution Integral (reset) 1 to 1000 (1000/s) with 0.1 setting resolution

 Derivative (rate)
 1 to 200% with 1% resolution

 Manual output
 0 to 100% with 0.01% setting resolution

 Zone control
 10 temperature zones with P, I, D, manual heater out, heater range, control

channel, ramp rate Setpoint ramping 0.1 K/min to 100 K/min Warm up heater mode settings (output 2 only)

- Warm up percentage 0 to 100% with 1% resolution Warm up mode Continuous contro Monitor output settings (output 2 voltage only) Continuous control or auto-off Scale User selected
 - Data source Temperature or sensor units Input, source, top of scale, bottom of scale, or manual Settinas

Quantum Design 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

Output 1

Туре	Variable DC current source			
Control modes	Closed loop o	ligital PID with ma	nual output or open loop	
D/A resolution		16-bit		
	25 Ω s	etting	50 Ω setting	
Max power	75 W*	50 W	50 W	
Max current	1.73 A	1.41 A	1 A	
Voltage compliance (min)	43.3 V	35.4 V	50 V	
Heater load for max	25 Ω	25 Ω	50 Ω	
power				
Heater load range		10 Ω to 10	Ω 00	
Ranges	3 (decade steps in power)			
Heater noise	0.12 µA RMS (dominated by line frequency and its harmonics)			
Heater connector	Dual banana			
Grounding	Output referenced to chassis ground			
Safety limits	Curve temperatu	Curve temperature, power up heater off, short circuit protection		

*75 W only available when output 2 is in voltage mode

Output 2

Туре	Variable DC current source or voltage source				
	Curren	t mode	Voltage mode		
Control modes	Closed loop d	igital PID with	Closed loop digital PID with		
	manual output,	zone, open loop	manual output, zone, open		
			loop, warm up, monitor out		
D/A resolution	15-	-bit	16-bit (bipolar)/15-bit		
			(unipolar)		
	25 Ω setting	50 Ω setting	N/A		
Max power	25 W	25 W	1 W		
Max current	1 A	0.71 A	100 mA		
Voltage compliance (min)	25 V	35.4 V	±10 V		
Heater load for max	25 Ω	50 Ω	100 Ω		
power					
Heater load range	10 Ω to	100 Ω	100 Ω min (short circuit		
			protected)		
Ranges	3 (decade steps in power)		N/A		
Heater noise	0.12 µA RMS		0.3 mV RMS		
Heater connector	Dual banana		Detachable terminal block		
Grounding		put referenced to			
Safety limits	Curve temperature, power up heater off, short circuit protectio				

Update rate 10/s Range ±10 V Resolution 16-bit, 0.3 mV Accuracy ±2.5 mV Noise 0.3 mV RMS Minimum load resistance 100 Ω (short-circuit protected) Connector Detachable terminal block

Front panel

Display 2-line by 20-character, 9 mm character height, vacuum fluorescent display Number of reading displays 1 to 4 Display units K, °C, V, mV, Ω Reading source Temperature, sensor units, max, and min Display update rate 2 rdg/s

Temperature display resolution 0.001° from 0° to 99.999°, 0.01° from 100° to 999.99°, 0.1° above 1000° Sensor units display resolution Sensor dependent, to 5 digits Other displays Sensor name, setpoint, heater range, heater output, and PID

Setpoint setting resolution Same as display resolution (actual resolution is

sensor dependent)

Heater output display Numeric display in percent of full scale for power or current Heater output resolution 1% Display annunciators Control input, alarm, tuning

LED annunciators Remote, alarm, control outputs

Keypad 25-key silicone elastomer keypad

Front panel features Front panel curve entry, display brightness control, and keypad lock-out

Interface I

IEEE-488.2	
Capabilities	SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT0, C0, E1
Reading rate	To 10 rdg/s on each input
Software support	LabVIEW [™] driver (see www.lakeshore.com)
USB	
Function	Emulates a standard RS-232 serial port
Baud rate	57,600
Connector	B-type USB connector
	To 10 rdg/s on each input
	LabVIEW [™] driver (see www.lakeshore.com)
Special interface featu	res Model 331/332 command emulation mode
Alarms	
Number	2, high and low for each input
Data source	Temperature or sensor units
Settings	Source, high setpoint, low setpoint, deadband, latching or non-
-	latching, audible on/off, and visible on/off
Actuators	Display annunciator, beeper, and relays
Relays	
Number	2
Contacts	Normally open (NO), normally closed (NC), and common (C)
Contact rating	30 VDC at 3 A
Operation	Activate relays on high, low, or both alarms for any input, or manual
	mode
Connector	Detachable terminal block

General

Ambient temperature 15 °C to 35 °C at rated specifications; 5 °C to 40 °C at reduced

specifications **Power requirement** 100, 120, 220, 240 VAC, ±10%, 50 or 60 Hz, 210 VA Size 217 mm W \times 90 m H \times 317 mm D (8.5 in \times 3.5 in \times 14.5 in), half rack Weight 5.1 kg (11.3 lb) Approval CE mark, RoHS

Ordering information

Part number Description

335 335-3060 3060	2 diode/RTD inputs and 2 control outputs temperature controller—includes one dual banana jack heater output connector (106-009), two 6-pin DIN plug sensor input mating connectors (G-106-233), one 8-pin terminal block (G-107-773), a calibration certificate and user manual Model 335 with 3060 option card installed 2-thermocouple input option for Model 335, uninstalled
Please indicate	your power/cord configuration:

1 100 V—U.S. cord (NEMA 5-15) 2 120 V—U.S. cord (NEMA 5-15) 3 220 V—Euro cord (CEE 7/7) 4 240 V—Euro cord (CEE 7/7) 5 240 V—U.K. cord (BS 1363) 6 240 V—Swiss cord (SEV 1011) 7 220 V—China cord (GB 1002)

Accessories

112-177	Temperature controller cable, 3 m (10 ft)—IN STOCK
112-178	Temperature controller cable, 6 m (20 ft)
112-180	Temperature controller cable, 10 m (33 ft)
6201	1 m (3.3 ft long) IEEE-488 (GPIB) computer interface cable assembly
RM-2	Kit for mounting two 1/2-rack temperature instruments in a 483 mm (19 in) rack
RM-1/2	Kit for mounting one 1/2-rack temperature instrument in a 483 mm (19 in) rack
G-106-233	Sensor input mating connector (6-pin DIN plug)
G-106-773	Terminal block, 8-pin
106-009	Banana plug, dual
CAL-335-CERT	Instrument recalibration with certificate
CAL-335-DATA	Instrument recalibration with certificate and data
119-055	Model 335 temperature controller manual

All specifications are subject to change without notice

Quantum Design 1 avenue de l'Atlantique Bâtiment Fuji-Yama 91940 Les Ulis - France

