Vibrating sample magnetometers 8600 series

Vibrating sample magnetometers 8600 series

Vibrating sample magnetometers 8600 series

MORE SCIENCE, LESS TIME

ADVANCED MEASUREMENT PERFORMANCE

The 8600 Series VSM raises the bar for magnetometer performance and convenience. These VSMs combine high sensitivity (15 nemu), rapid measurement speed ($10 \mathrm{~ms} / \mathrm{pt}$), and simple operation for more accurate measurements, faster.

CONVENIENT OPERATION

The entire 8600 Series system has been reimagined with a focus on clean, ergonomic design that simplifies the researcher's interaction with the system. A motorized head brings the sample to a comfortable height for easy, one-handed exchange of the QuickLIGN"w sample rods. Temperature options include a cryostat, high-temperature oven, and single stage variable temperature insert. The combined temperature range of the options is 4.2 K to 1273 K . All three GlideLOCK ${ }^{\text {Tw }}$ options quickly slide into place and are auto-detected, with the software automatically displaying controls for the specific option. The magnet poles are also easily adjusted with the ExactGAP ${ }^{\text {w }}$ indexed positioning system that allows the pole gap to be set at one of six repeatable positions, eliminating the need to recalibrate after each change.

DESIGNED FOR FORC

The 8600 Series VSM was created with first order reversal curve (FORC) measurement as a primary objective. FORC analysis is greatly enhanced by the high sensitivity of the 8600 Series VSM. FORC also benefits from increased data point density, and the new VSM flies through complex FORC data collection sequences in a fraction of the time required on previous systems.

FLEXIBLE AND ADAPTABLE

The system's software simplifies control of the VSM. Standard predefined measurement routines are combined with configurable field and measurement loops to provide a flexible data acquisition environment. In addition, the software features an integrated scripting tool, which enables the user to extend the existing routines with an open-ended software scripting language that can be used to perform customized measurement protocols and interface with third-party lab equipment.

Vibrating sample magnetometers 8600 series

THE APPROACH: RETHINK EVERYTHING

As part of the project charter, the team had no constraints. Our approach was to design a completely new system for the ultimate in performance and usability.
We developed novel measurement techniques and reimagined each part of the system - from the mechanics of loading a sample to the fluidity of the all new software interface - to create a next generation VSM capable of quickly characterizing the magnetic properties of a broad range of materials, especially very low moment samples.

FOCUSED ON LEADING-EDGE RESEARCH

The 8600 Series VSM enables better measurements in less time, accelerating magnetics research and supporting the study of novel, low moment, and hybrid materials.

PERFORMANCE

Resulting from extensive design innovations that lower the noise floor and increase sampling speed, the 8600 VSM system brings new levels of measurement performance to magnetic characterization. The system features ultra-high sensitivity (down to 15 nemu), wide dynamic range, faster field ramping ($10,0000 \mathrm{e} / \mathrm{s}$) and rapid data acquisition (up to $10 \mathrm{~ms} / \mathrm{pt}$). A complete -2 T to +2 T hysteresis loop with 3,000 measurement points can be completed in about 30 seconds.
Field setting resolution of $1 \mathrm{m0e}$ is available across the entire measurement range, and especially helpful in regions where moment gradient $\Delta \mathrm{M}$ is high. This fine resolution, combined with high sensitivity and fast measurement speed, make the 8600 Series ideal for first order reversal curve (FORC) measurements, which inherently involve very large data sets.
Lake Shore's significant background in FORC guided the 8600 Series development, which set out to ensure that FORC measurements were fully supported and convenient to make. The resulting new VSM system not only performs these complex measurement routines with great speed and precision, but also provides built-in tools to ensure that configuring and managing FORC profiles is very straightforward.

USABILITY

Convenience is a primary focus of the 8600 Series, starting with the QuickLIGN ${ }^{\text {TM }}$ sample rod exchange, which can be accomplished easily with one hand. When variable temperature studies are needed via cryostat, oven, or wide-range SSVT, the 8600 Series VSM has significantly streamlined the process of adjusting the pole gap and installing and configuring the temperature option. Overall time required is reduced to well under 5 minutes, with the system software auto-detecting the type of temperature option and reconfiguring settings instantly.
While the 8600 Series software provides a broad range of measurement flexibility, Lake Shore knows that researchers are often interested in trying new measurement protocols. The software incorporates a full scripting engine and encourages users to either edit and adapt the standard protocol scripts provided, or create their own.
The powerful combination of measurement sensitivity, speed, integrated FORC routines, convenience, and adaptability make the 8600 Series VSM an ideal platform for advanced magnetics research.

Vibrating sample magnetometers 8600 series

MEASUREMENT APPLICATIONS

The need to characterize new and emerging materials continues to push the limits of electromagnet-based VSM systems. The 8600 Series VSM steps up to meet the most demanding material research applications.
Extremely fast data acquisition cycles make the system ideal for research environments where rapid measurement results can accelerate the discovery of important new properties. QuickLIGN ${ }^{\text {TM }}$ sample holders are offered for thin film, liquid, powder, and bulk samples, making the VSM an excellent choice for busy labs with varying sample measurement needs.

The high sensitivity of the 8600 Series VSM particularly benefits research into low moment materials such as ultra-thin magnetic films and multilayers, nanoscale magnetic materials, dilute magnetic semiconductors, and paleomagnets.

The system benefits applications involving the study of:
■ Natural magnets (rocks, sediments, etc.)

- Nanoscale wires, particles, nano-crystalline alloys, etc.
- Magnetic semiconductors
- Ferrofluids
- Magnetic thin films and multi-layers
- Ferrites and permanent magnets, including rare-earth materials
- Magnetocaloric effect materials

Ideal for the broadest

range of magnetic material
characterization applications

Vibrating sample magnetometers 8600 series

VERY EASY SAMPLE EXCHANGE -
motorized head movement for sample extraction, allows for one-handed exchange of the QuickLIGN ${ }^{T M}$ sample rods

EASY-TO-INSTALL TEMPERATURE OPTIONS software automatically identifies and displays option-specific controls for installed GlideLOCK ${ }^{\text {T }}$ temperature options to quickly measure from 4.2 K to $1,273 \mathrm{~K}$

UNATTENDED SINGLE-STAGE CONTROL -
automatic switching between cryogenic to heated operations

REPEATABLE GAP SETtINGS -

six indexed ExactGAP ${ }^{\text {TM }}$
magnet positions each have their own saved calibration

TWO ELECTROMAGNET CONFIGURATIONS choose from the 4 in or 7 in magnets for field requirements up to 3.26 T

Vibrating sample magnetometers 8600 series

Vibrating sample magnetometers 8600 series

ALL NEW SOFTWARE

EASILY EXECUTE MEASUREMENT ROUTINES AND EXPERIMENTS

The 8600 Series comprehensive Windows ${ }^{\circledR}$-based software simplifies the process of acquiring data. The flexible software allows the user to monitor the real-time performance of the VSM and to construct measurement sequences from a set of predefined controls. The menu-driven graphical user interface (GUI) provides the ability to control field and temperature to a specific setpoint or to loop these parameters through a range of settings with a specified step value. Predefined measurement controls are also provided to complete individual moment readings, hysteresis loops and even collect first order reversal curve (FORC) data. The sequences can be saved and recalled for repeated measurements.
The interface also simplifies the implementation of the three GlideLOCK ${ }^{T M}$ temperature options (86-OVEN, 86-CRYO, and 86-SSVT) by automatically detecting and displaying each option as it is plugged into the system. With the integrated Model 705 gas controller, the software can provide automated, unattended VSM measurements throughout the entire temperature range (4.2 K to 1273 K).

Advanced data processing capabilities of the software include expand and offset data, correct for demagnetization and slope factors, normalize for sample mass and volume, subtract substrate corrections and backgrounds from measurement data, calculate and display derivative curves, and much more. In addition to measuring magnetization curves and magnetization vs. time or temperature, the 8600 Series VSM provides insight for a host of measurements including:

- Hysteresis loop

■ Isothermal remnant magnetization

- DC demagnetization remanence
- Minor loops
- FORC
- $\mathrm{M}(\mathrm{T})$-temperature dependent magnetization
- $M(\theta)$ —rotational hysteresis and anisotropy

Vibrating sample magnetometers 8600 series

QPTION EXRLICIT
 SUB MAIN

'START HYSTERESTS 1
SCRIPT. SETVOLTAGETOMOMENTCALIBRATIONFACTOR 1
SCRIPT.BEGINMEASUREMENTSTEP "1"
SCRIPT.SETSATURATIONPOINT(30000, 100000)
SCRIPT. SETDATAACQUISITIONPARAMS|DATAACQUISITIONMOL
DIM CHART AS MEASUREMENTCHART
CHART = SCRIPT.CREATECHART("1")
CHART.ADDXAXIS MEASUREMENTXAXISTYPE.FIELD, "FIELD
CHART.ADDYAXIS MEASUREMENTYAXISTYPE.MOMENT, "MOMEN
DIM INITIALCURVESERIES = NEW MEASUREMENTCHARTPLOTSERIE

CUSTOM SCRIPTING

For customized experiments, the 8600 Series VSM offers advanced scripting capabilities through an integrated interface easily accessible from the data acquisition tab in the software. Scripting is extremely useful for implementing customized VSM functionality that may not have been implemented in the standard software release. High level system calls are exposed so that the user can easily control the VSM data collection process and interweave external process calls. The script window enables you to capture the predefined measurements to view as a script. This is useful for understanding exactly how the 8600 is executing the measurements, but also provides an easy way to create a starting template for customized measurements. This powerful addition to the software puts the researcher fully in control of their unique measurement process.

CUSTOMIZE

OR CREATE YOUR OWN

Vibrating sample magnetometers 8600 series

MEASUREMENT SPEED IS KEY

While there have been many features included to make setup and data collection easy, the most notable feature in the 8600 Series VSM is the data acquisition speed. A complete change in the acquisition architecture permits an unprecedented data rate with exceptional, built-in noise suppression. The 8600 Series is capable of continuous $10 \mathrm{~ms} /$ point acquisition (100 points per second). A complete -2 T to +2 T hysteresis loop with 3,000 measurement points can be completed in less than 30 seconds.

- FORC is relevant to any material composed of fine (micron- or nanoscale) magnetic particles, which includes a broad array of magnetic materials
(e.g., permanent magnets, recording media, magnetic nanowires and dots).
- The complex magnetic signatures of multi-phase magnets is difficult, if not impossible, to unravel from a hysteresis loop measurement alone. FORC can distinguish between phases in magnetic materials containing more than one phase (e.g., exchange spring magnets, soft shell/hard core nanowires)

A FORC is measured by saturating a sample in a field $\mathrm{H}_{\text {sat }}$, decreasing the field to a reversal field H_{a}, then sweeping the field back to $\mathrm{H}_{\text {sat }}$ in a series of regular field steps. This process is repeated for many values of H_{a}, yielding a series of FORCs that can be exported for further analysis.
Because FORCs may contain many thousands of data points, measurement speed is critical to productive research. However, data point quantity alone is not enough. FORC requires adherence to specific data collection protocols in order for the subsequent analysis to be meaningful.
The 8600 Series VSM has been specifically designed to execute FORC measurements quickly and easily, and with high precision. 10,000-point FORCs can be completed in minutes.
Proven FORC data acquisition protocols are built into the standard 8600 VSM system software and are very easy to set up, run, and modify. FORC data sets, once acquired, are readily exported for analysis using FORCinel* or similar third-party tools to render distribution plots of interaction and switching fields. FORCs are indispensable in characterizing interactions and coercivity
 distributions that reveal insight into the relative proportions of reversible and irreversible components of the magnetization in many technologically important magnetic materials. The 8600 Series VSM is the best VSM in the industry for convenient, productive, and accurate FORC measurement.
*R.J. Harrison, J.M. Feinberg, FORCinel: An Improved Algorithm for Calculating First-Order Reversal Curve Distributions Using Locally Weighted Regression Smoothing, Geochemistry, Geophysics, Geosystems. 9, 11, 2008. FORCinel may be downloaded from: https://wserv4. esc.cam.ac.uk/nanopaleomag/?page_id=31.

Vibrating sample magnetometers 8600 series

MAXIMUM FIELD
 2.76 T

MAXIMUM FIELD

3.26 T

COMPARABLE TO MODEL 7410-S

MODEL 8607

Vibrating sample magnetometers 8600 series

PERFORMANCE DRIVEN

Compare the 8600 Series with the 7400 Series VSM

IMPRovement $10,0000 \mathrm{e} / \mathrm{s}$

10x
 IMPROVEMENT $10 \mathrm{~ms} /$ pt

20xFIELD SETTING RESOLUTION
IMPROVEMENT 1 mOc

Vibrating sample magnetometers
 8600 series

OBSERVED DATA

Noise at $10 \mathrm{~s} /$ point averaging at ExactGAP ${ }^{T M}$ Index 1. The observed noise is only 13 nemu RMS and 50 nemu peak-to-peak.

RMS noise ($\mu \mathrm{emu}$) versus gap and signal averaging for the 8600 VSM.

ExactGAP'" setting	$\mathbf{1 0} \mathbf{s} / \mathrm{pt}$	$\mathbf{1 ~ s / p t}$	$\mathbf{1 0 0} \mathbf{~ m s} / \mathbf{p t}$	$\mathbf{1 0} \mathbf{~ m s} / \mathrm{pt}$
Index 1	0.013	0.04	0.12	0.30
Index 3 (SSVT option)	0.07	0.27	0.78	2.2

1 min 25 s hysteresis loop at $100 \mathrm{~ms} /$ point for a $20 \mu \mathrm{mu}$ CoPt thin film.

13 min 30 s hysteresis loop at $1 \mathrm{~s} /$ point for a $20 \mu \mathrm{mu}$ CoPt thin film.

13 s hysteresis loop at $10 \mathrm{~ms} /$ point for a 14 memu magnetic stripe.

69 s hysteresis loop at $100 \mathrm{~ms} /$ point for a $80 \mu \mathrm{emu}$ CoPt thin film.

4 min 32 s measurement of 46 FORCs for a 14 memu magnetic stripe.

REPEATABLE AND CONVENIENT

EASY SAMPLE ROD EXCHANGE AND SAMPLE ROTATION

The 8600 Series VSM's motorized head brings the sample to a comfortable height for easy exchange of sample rods. The QuickLIGN ${ }^{\text {M }}$ quick-release coupling mechanism allows the rod to slide smoothly into the measurement collar and lock securely in place - simple enough to do with one hand.
The autorotation feature offers full software-based control over sample rotation about the z-axis. The sample can be continuously rotated in either direction.

ELECTROMAGNET AND SAMPLE HOLDER OPTIONS

The 8600 Series VSM offers two models based on variable-gap 4-inch or 7-inch electromagnets, both of which offer a stability of $0.05 \% /$ day. The ExactGAP ${ }^{\text {TM }}$ pole gap indexing makes it fast and easy to reconfigure the magnet gap for the required sample or option size. A variety of sample holders accommodate thin films, solids, powders, liquids, and bulk materials.

RAPID TEMPERATURE OPTION CHANGE

8600 Series GlideLOCK ${ }^{\text {TM }}$ variable temperature options include a lowtemperature $\mathrm{LHe} / \mathrm{LN}_{2}$ cryostat, a high-temperature oven, and single stage variable temperature (SSVT) insert. All three quickly click into place and are auto-detected, the software automatically displaying controls for the specific option.
ExactGAP ${ }^{\text {TM }}$ repeatable pole gap indexing minimizes delays when an option change is required. Use preset gap settings for each temperature option or sample holder to quickly move the caps to a precise, precalibrated position, and do so repeatedly without having to manually recalibrate for each setting.

AUTOMATED WIDE TEMPERATURE OPERATION

When using the temperature options, the 8600 Series VSM supports fully automated unattended variable temperature operation across the full temperature range of each option spanning 4.2 K to 1273 K . The Model 705 gas controller automates the gas handling and manages the exhaust gas to prevent unsafe venting of extreme temperature gases and icing of exhaust port when venting cryogenic gases.

Vibrating sample magnetometers 8600 series

GLIDELOCK ${ }^{m}$ TEMPERATURE OPTION ALIGNMENT

The GlideLOCK ${ }^{\text {TM }}$ alignment system was created to simplify the insertion and removal of all three temperature options in to 8600 VSM providing rapid, repeatable sample positioning in all configurations.

Vibrating sample magnetometers 8600 series

8600 SERIES VSM SPECIFICATIONS

gaps 4 \& 6 SUPPORT APPLICATION	Sample space	Sample size with option	8604 maximum field-all modes Maximum ramp rate $10 \mathrm{kOe} / \mathrm{s}(1 \mathrm{~T} / \mathrm{s})$	8607 maximum field—high field mode Maximum ramp rate dependent on ExactGAP*	8607 maximum field—high speed mode Maximum ramp rate $10 \mathrm{kOe} / \mathrm{s}(1 \mathrm{~T} / \mathrm{s})$
ExactGAP ${ }^{\text {TM }}$ Index 1	$\begin{aligned} & 3.5 \mathrm{~mm} \\ & (0.14 \mathrm{in}) \\ & \hline \end{aligned}$	N/A	27.6 KOe (2.76 T)	32.6 kOe (3.26 T)	24.0 kOe (2.4 T)
ExactGAP ${ }^{\text {m }}$ Index 2	$\begin{gathered} 8 \mathrm{~mm} \\ (0.31 \mathrm{in}) \end{gathered}$	N/A	$25.2 \mathrm{kOe}(2.52 \mathrm{~T})$	30.1 k0e (3.01 T)	$21.0 \mathrm{kOe}(2.1 \mathrm{~T})$
$\begin{aligned} & {\text { ExactGAP }{ }^{\text {m }}}^{\text {Index } 3} \end{aligned}$	$\begin{aligned} & 16 \mathrm{~mm} \\ & (0.63 \mathrm{in}) \end{aligned}$	$\begin{gathered} 6.4 \mathrm{~mm} \text { (} 0.25 \mathrm{in}) \\ \text { with SSVT } \end{gathered}$	20.3 k0e (2.03 T)	26.2 kOe (2.62 T)	19.0 kOe (1.9 T)
$\begin{aligned} & \text { ExactGAP }{ }^{T M} \\ & \text { Index } 5 \end{aligned}$	$\begin{aligned} & 24 \mathrm{~mm} \\ & (0.94 \mathrm{in}) \end{aligned}$	$\begin{aligned} & 6.4 \mathrm{~mm} \text { (} 0.25 \mathrm{in}) \\ & \text { with oven or } \\ & \text { cryostat } \\ & \hline \end{aligned}$	$15.5 \mathrm{kOe}(1.55 \mathrm{~T})$	23.1 k0e (2.31 T)	$15.0 \mathrm{kOe} \mathrm{(1.5} \mathrm{T)}$

* EXACTGAP 1-2 MAXIMUM RAMP RATE $=5 \mathrm{KOE} / \mathrm{S}(0.5 \mathrm{~T} / \mathrm{S})$: EXACTGAP 3 MAXIMUM RAMP RATE $=4 \mathrm{KOE} / \mathrm{S}(0.4 \mathrm{~T} / \mathrm{S})$: EXACTGAP 5 MAXIMUM RAMP RATE $=3 \mathrm{KOE} / \mathrm{S}(0.3 \mathrm{~T} / \mathrm{S})$

APPLIED Field strength with standard pole caps ($\pm 1 \%$)					
GAPS 4 \& 6 SUPPORT NON-VSM applications	Sample space	Sample size with option	8604 maximum field-all modes Maximum ramp rate $10 \mathrm{kOe} / \mathrm{s}(1 \mathrm{~T} / \mathrm{s})$	8607 maximum field-high field mode Maximum ramp rate dependent on ExactGAP*	8607 maximum field—high speed mode Maximum ramp rate $10 \mathrm{kOe} / \mathrm{s}(1 \mathrm{~T} / \mathrm{s})$
ExactGAP ${ }^{\text {m }}$ Index 1	$\begin{aligned} & 3.5 \mathrm{~mm} \\ & (0.14 \mathrm{in}) \\ & \hline \end{aligned}$	N/A	26.1 k0e (2.61 T)	31.2 kOe (3.12 T)	23.0 kOe (2.30 T)
ExactGAP ${ }^{\text {TM }}$ Index 2	$\begin{gathered} 8 \mathrm{~mm} \\ (0.31 \mathrm{in}) \end{gathered}$	N/A	23.7 k0e (2.37 T)	28.9 kOe (2.89 T)	20.3 kOe (2.03 T)
$\begin{aligned} & \text { ExactGAP }{ }^{T M} \\ & \text { Index } 3 \end{aligned}$	$\begin{aligned} & 16 \mathrm{~mm} \\ & (0.63 \mathrm{in}) \end{aligned}$	$\begin{gathered} 6.4 \mathrm{~mm} \text { (} 0.25 \text { in) } \\ \text { with SSVT } \end{gathered}$	19.6 kOe (1.96 T)	$25.3 \mathrm{kOe}(2.53 \mathrm{~T})$	18.5 kOe (1.85 T)
$\begin{aligned} & \text { ExactGAP }^{T M} \\ & \text { Index } 5 \end{aligned}$	$\begin{gathered} 24 \mathrm{~mm} \\ (0.94 \mathrm{in}) \end{gathered}$	6.4 mm (0.25 in) with oven or cryostat	15.4 kOe (1.54 T)	22.3 kOe (2.23 T)	$14.5 \mathrm{kOe}(1.45 \mathrm{~T})$

* EXACTGAP 1-2 MAXIMUM RAMP RATE $=5 \mathrm{KOE} / \mathrm{S}(0.5 \mathrm{~T} / \mathrm{S})$: EXACTGAP 3 MAXIMUM RAMP RATE $=4 \mathrm{KOE} / \mathrm{S}(0.4 \mathrm{~T} / \mathrm{S})$. EXACTGAP 5 MAXIMUM RAMP RATE $=3 \mathrm{KOE} / \mathrm{S}(0.3 \mathrm{~T} / \mathrm{s})$

moment measurement	
Noise floor (emu RMS)	
Room temperature	
$0.1 \mathrm{~s} / \mathrm{pt}$	150 nemu
$1 \mathrm{~s} / \mathrm{pt}$	60 nemu
$10 \mathrm{~s} / \mathrm{pt}$	15 nemu
With oven or cryostat option $10 \mathrm{~s} / \mathrm{pt}$	300 nemu
With SSVT option	
With vector coil option	x coils: 90 nemu at Exact GAP 3; y coils: 200 nemu at ExactGAP 3
Dynamic range	25×10^{-9} to $10^{3} \mathrm{emu}$
Moment stability	Better than $\pm 0.05 \%$ of full scale/day for fixed coil geometry at constant field and temperature
Reproducibility	Better than $\pm 0.5 \%$ or $\pm 0.1 \%$ of full scale, fixed rotation angle and range, with sample replacement
Moment accuracy	Better than 1% of reading $\pm 0.2 \%$ of full scale with a geometrically identical test sample and calibrant
Sample mass	0 g to 10 g

FIELD MEASUREMENT	
Field accuracy	1% of reading or $\pm 0.05 \%$ of full scale
Field resolution	1 mOe
Field ramp rate	8604: 10,000 0e/s 8607: 10,000 0e/s (in high-speed mode; reduced when in high field mode)
Closed loop field control stability	1 mOe

Sample rotation	
Setting resolution	0.1°
Setting reproducibility	$<1^{\circ}$
Rotation range	Continuous
cerifications	
CE	Yes
Application of Council directives	2014/35/EU Low Voltage Directive 2014/30/EU EMC Directive 2011/65/EU RoHS Directive
Standard to which conformity is declared	EN61010-1: 2010 Overvoltage Category II, Pollution Degree 2; EN61326-1: 2013 Class A, Controlled EM Environment; EN55011: 2009 Class A, Controlled EM Environment; EN50581: 2012
utilitis	
Total system cooling water power dissipation (50 or 60 Hz) - see list of available recirculating chillers	$\begin{aligned} & \text { 8604: } 4250 \mathrm{~W} \\ & \text { 8607: } 13400 \mathrm{~W} \end{aligned}$

Vibrating sample magnetometers 8600 series

8600 SERIES OPTION SPECIFICATIONS

model es-cryo variable temperature cryostat	
With LHe temperature range	4.2 K (base), 5.5 K to 450 K (control)
LHe temperature stability	$\pm 0.1 \mathrm{~K}$
With LN_{2} temperature range	77.6 K (base), 85 K to 450 K (control)
LN_{2} temperature stability	$\pm 0.2 \mathrm{~K}$
Temperature resolution	0.001 K
Cool-down time	5 min (15 min initial cool-down)
Operation method	Continuous flow
LHe liquid usage	$<1 \mathrm{~L} / \mathrm{h}$ when operating $>7 \mathrm{~K}$
L N_{2} liquid usage	$<1 \mathrm{~L} / \mathrm{h}$ when operating > 85 K
Insulation	Vacuum
Sample zone Bore size	7.1 mm (0.28 in)
dimensions Outside diameter	22.4 mm (0.88 in)

8600 SERIES VSM EQUIPMENT

model 86-0VEN high temperature oven	
Temperature range	308 K to 1273 K
Temperature stability	$\pm 0.1 \mathrm{~K}$
Temperature resolution	0.001 K
Nominal ramp rate	$5 \mathrm{~K} / \mathrm{min}$
Insulation	Vacuum plus multiple reflective shields
Sample zone dimensions	Bore size
	Outside diameter

model es-ssvt single stage variable temperature option	
Temperature range	78 K (base), 100 K to 950 K (control)
Temperature stability	0.1 K RMS
Temperature resolution	0.001 K
Gasses	LN_{2} and nitrogen gas for $\mathrm{T}<350 \mathrm{~K}$; argon for $\mathrm{T}>$ 350 K
Cool-down time	40 min from room temperature to 100 K
Nominal ramp rate (in the domain)	Up to $8 \mathrm{~K} / \mathrm{min}$
Operating method	Continuous flow
$\mathrm{LN} \mathrm{N}_{2}$ usage	$0.5 \mathrm{~L} / \mathrm{h}>100 \mathrm{~K}$ to 350 K
Nitrogen gas usage	$\sim 3 \mathrm{~L} / \mathrm{min} 100 \mathrm{~K}$ to 350 K
Argon gas usage	$\sim 3 \mathrm{~L} / \mathrm{min}$
Insulation	Vacuum
Sample zone Bore size	7.8 mm (0.31 in)
dimensions Outside diameter	12.7 mm (0.5 in)

	8604	8607
VSM head drive	Gen2	
VSM frame	V-mag	
Control electronics	Model 737	
Bipolar magnet power supply	Model 643	Model 648
Maximum output	$\pm 35 \mathrm{~V} / \pm 70 \mathrm{~A}(2450 \mathrm{~W})$	$\pm 75 \mathrm{~V} / \pm 135 \mathrm{~A}(9.1 \mathrm{~kW}$ nominal)
AC line input	$\begin{gathered} \text { 204/8 VAC } \pm 10 \%, 13 \text { A/phase; } \\ 220 / 230 \mathrm{VAC} \pm 10 \%, 12 \mathrm{~A} / \text { phase; } \\ 380 \mathrm{VAC} \pm 10 \%, 7 \mathrm{~A} / \text { phase; } \\ 400 / 415 \mathrm{VAC} \pm 10 \%, 6.5 \mathrm{~A} / \text { phase at } 50 / 60 \mathrm{~Hz} \end{gathered}$	200 VAC $\pm 5 \%, 41$ A/phase; 208 VAC $\pm 5 \%, 40$ A/phase; 220 VAC $\pm 5 \%, 38$ A/phase; 230 VAC $\pm 5 \%, 37$ A/phase; 380 VAC $\pm 5 \%, 23$ A/phase; 400 VAC $\pm 5 \%, 21$ A/phase; 415 VAC $\pm 5 \%, 21$ A/phase
Cooling water requirements	Tap water or closed cooling system (optional chiller available) $+15^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$	
Flow rate	$5.7 \mathrm{~L}(1.5 \mathrm{gal}) /$ min minimum	7.6 L (2.0 gal)/min minimum
Pressure drop	$10 \mathrm{kPa}(1.5 \mathrm{psi})$ at $5.7 \mathrm{~L}(1.5 \mathrm{gal}) / \mathrm{min}$ minimum for power supply only	$159 \mathrm{kPa}(23 \mathrm{psi})$ at $7.6 \mathrm{~L}(2.0 \mathrm{gal}) / \mathrm{min}$ minimum for power supply and mandatory flow switch
Electromagnet	Model EM-4V	Model EM-7V
Pole diameter	100 mm (4 in)	180 mm (7 in)
Pole cap face diameter	50 mm (2 in)	50 mm (2 in)
Field homogeneity	$\pm 0.1 \%$ over $10 \mathrm{~mm}^{3}\left(0.4 \mathrm{in}^{3}\right)$	$\pm 0.1 \%$ over $10 \mathrm{~mm}^{3}\left(0.4 \mathrm{in}^{3}\right)$
Cooling water requirements	Tap water or closed cooling system (optional chiller available)	
Inlet temperature	15 to $25^{\circ} \mathrm{C}$ (59 to $77^{\circ} \mathrm{F}$)	15 to $32{ }^{\circ} \mathrm{C}\left(59\right.$ to $\left.89{ }^{\circ} \mathrm{F}\right)$
Flow rate	$7.6 \mathrm{~L}(2 \mathrm{gal}) / \mathrm{min}$	11.4 L (3 gal)/min
Pressure drop	200 kPa (30 psi)	220 kPa (32 psi)
Hall probe	86-0911	
Sense coils	Model 86-SC and Model 86-LC	
Instrument console	483 mm (19 in) rack	

Vibrating sample magnetometers 8600 series

EXPAND YOUR (APABILITIES WITH OPTIONS

 TEMPERATURE OPTION OPERATING RANGES

The single stage variable temperature assembly allows you to take measurements from 100 K to 950 K using
LN_{2}, nitrogen, and argon gas. A single point measurement can be taken at 77 K . The fully automated 705 gas controller permits the user unattended operation from high to low temperatures, eliminating the need to remove or resaddle your sample. This ensures accurate measurements throughout the full operating range. Rapid cool down from 950 K to room temperature and from room temperature to 100 K provides efficiency and high throughput. Like our full suite of variable temperature options, the single
 stage variable temperature option uses the GlideLOCK alignment system to simplify option insertion and produce repeatable sample positioning and ensuring optimum noise floor. Designed to deliver superior thermal performance, the unit's vacuum insulation prevents freeze over at low temperatures and can operate safely at high temperatures without the risk of damaging neighboring components.

Included with the 86-SSVT:

1. Single stage variable temperature insert with GlideLOCK mount
2. $25 \mathrm{~L} \mathrm{LN}_{2}$ Dewar with condenser stand
3. LN_{2} transfer line with condenser assembly
4. Instrument cables
5. Sample rods and holders
6. Wall mount bracket to store option when not in use

Supplemental 86-SSVT equipment requirements:

1. Lake Shore 86-VTA variable temperature option kit
2. Lake Shore 705 gas controller
3. Argon gas cylinder with $344 \mathrm{kPa}(50 \mathrm{psi})$ gas regulator and 3 mm hose barb (can also be a $1 / 4$ NPT female fitting)
4. Nitrogen gas cylinder with a $344 \mathrm{kPa}(50 \mathrm{psi})$ gas regulator and 3 mm hose barb (can also be a $1 / 4$ NPT female fitting)
5. $\mathrm{L} \mathrm{N}_{2}$ source to fill the provided Dewar
6. Clean compressed air (276 kPa [40 psi])
7. Lake Shore TPS-FRG compact turbo pumping system (required for full automation) or mechanical vacuum pump (E2M or equivalent) kit providing sample space blank off pressure of $<0.67 \mathrm{~Pa}\left(5 \times 10^{-3} \mathrm{Torr}\right)$ for routine operation
8. Turbomolecular vacuum pump (Lake Shore TPS-FRG or equivalent) kit for cryogen transfer line maintenance - can also be used in place of the E2M rotary vacuum pump
9. A Pirani or thermocouple vacuum gauge capable of measuring pressures from 0.1 to $100 \mathrm{~Pa}\left(10^{-3}\right.$ to 1 Torr)

cONFIGURE YOUR SYSTEM-EXACTIY THE WAY YOU NEED IT

86-CRYO VARIABLE TEMPERATURE CRYOSTAT WITH GLIDELOCK ${ }^{\text {M }}$ ALIGNMENT SYSTEM

This VSM cryostat is designed for rapid sample cooling with either LHe or LN_{2} as well as easy sample insertion and interchange. It allows you to take measurements from 5.5 K to 450 K using LHe and from 85 K to 450 K using LN_{2}. A single-point measurement can be taken at $4.2 \mathrm{~K}(\mathrm{LHe})$ and at $77.6 \mathrm{~K}\left(\mathrm{LN}_{2}\right)$. The sample is suspended in a proprietary insulated tube constructed of nonmagnetic material.

Like our full suite of variable temperature options, 86-CRYO cryostat uses the GlideLOCK alignment system to simplify option insertion and produce repeatable sample positioning and ensuring optimum noise floor.
The cryostat design provides the user the capability to perform measurements economically over nearly the entire accessible temperature range with a single cryostat. The transfer line is included.

Included with the 86-CRYO:

1. Combination $\mathrm{LHe} / \mathrm{LN}_{2}$ cryostat with GlideLOCK mount
2. $\mathrm{LHe} / \mathrm{LN}_{2}$ transfer line
3. Cryogen transfer kit
4. Instrument cables and related accessories
5. Sample rods and holders
6. Wall mount bracket to store option when not in use

Supplemental 86-CRYO equipment requirements:

1. Lake Shore 86 -VTA temperature option kit
2. A mechanical vacuum pump (Lake Shore E2M or similar) capable of achieving a pressure below $0.67 \mathrm{~Pa}(5 \times$ 10^{-3} Torr) and a speed of $1 \mathrm{~m}^{3} / \mathrm{h}$, along with a KF-16 flange pump inlet
3. Access to turbomolecular vacuum pump (Lake Shore TPSFRG or similar) capable of doing better than $1.33 \times 10^{-3} \mathrm{~Pa}$ (10^{-6} Torr) for annual evacuation of transfer line vacuum space
4. LHe or LN_{2} storage Dewar (Lake Shore 1220-50 or similar) with top withdraw fitting to accept the 12.8 mm (0.5 in) diameter transfer line - the transfer line furnished with the 86-CRYO cryostat is particularly well adapted for use with 25 to 60 L storage vessels, and can be readily adapted to other capacity storage vessels (in most cases, a LHe Dewar will be provided by your local liquid gas distributor when LHe is delivered)
5. Gas cylinder with 1 to 5 psi pressure regulator to deliver clean, dry helium or nitrogen gas (depending on liquid cryogen)

86-OVEN HIGH TEMPERATURE OVEN WITH GLIDELOCKm ALIGNMENT SYSTEM

The high temperature oven is used to investigate materials at high temperature. It is an electrically heated outer tube assembly with thermal insulation for sample-zone temperatures from $100^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}(373 \mathrm{~K}$ to 1273 K$)$. Temperatures from $30^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ (303 K to 1273 K) are also possible, however, below $100^{\circ} \mathrm{C}(373 \mathrm{~K})$ measurement time increases. Argon gas inside the sample chamber enhances heat flow with the sample. The 705 gas controller can be added as an option to automatically stop the argon feed after the measurement is completed, but the 705 is not required for the 86OVEN option.
The sample zone chamber is lined with a heat-resistant and intrinsically non-magnetic material. The provided sample holder is a quartz tube sample rod attached to a boron-nitride sample cup. The 86-OVEN uses the GlideLOCK alignment system to simplify insertion and produce repeatable sample positioning and optimum noise floor. To accommodate the oven within the magnet, ExactGAP index 5 is required. A mechanical vacuum pump capable of maintaining inlet pressures down to $0.67 \mathrm{~Pa}\left(5 \times 10^{-3}\right.$ Torr) must be supplied by the user.
The efficient thermal insulation consists of an evacuation outer chamber with multiple reflective heat shields. Sample zone temperatures as high as $1000^{\circ} \mathrm{C}$ are attained with a power consumption of
 approximately 70 W . Two results of the low power consumption are minimal magnetic interference and increased temperature uniformity in the sample zone. The oven is particularly well suited to measuring Curie temperatures of ferromagnetic or ferrimagnetic materials at temperatures up to $1000^{\circ} \mathrm{C}$. The sensitivity of the VSM permits Curie temperature determinations at relatively low field intensities, allowing more inherently accurate determinations.
At room temperature and above, measurements may be performed in an argon atmosphere to protect the sample from oxidation.

Included with the 86-0VEN:

1. Oven assembly with mount
2. Nickel Curie sample cylinder
3. Instrument cables and related accessories
4. Sample rods and holders

Supplemental 86-OVEN equipment requirements:

1. Lake Shore 86-VTA temperature option kit
2. Lake Shore 705 gas controller (optional, but not required)
3. A mechanical vacuum pump (Lake Shore E2M or similar) capable of achieving a blanked-off pressure below $0.67 \mathrm{~Pa}\left(5 \times 10^{-3} \mathrm{Torr}\right)$ and a pumping speed of $1 \mathrm{~m}^{3} / \mathrm{h}$, with a KF-16 flange pump inlet
4. Argon gas cylinder with 5 to 10 psi regulator and 3 mm (1/8 in) hose barb

Vibrating sample magnetometers 8600 series

86-VTA TEMPERATURE OPTION KIT

The autotuning cryogenic temperature controller is used to measure and control our full suite of variable temperature options. The 86-VTA includes a Lake Shore temperature controller, thermocouple input card (when purchased for use with the high temperature oven or single stage variable temperature assembly), GlideLOCK alignment system mount, vacuum handling kit, mounting hardware, flanges, hoses, connectors, and accessories. Note: only one 86-VTA is required for all variable temperature options.

705 GAS CONTROLLER

The 705 gas controller was specifically designed to automate the gas handling for the temperature options. The 705 operation is controlled by the 8600 Series software and allows the user to have unattended operation from 4.2 K to $1,273 \mathrm{~K}$. In addition, when used in conjunction with the TPS-FRG turbomolecular pump, the 8600 system also monitors the vacuum space surrounding each temperature option to ensure insulation.

86 -VEC

The vector option extends the VSM measurement capabilities to facilitate investigations of anisotropic magnetic materials, allowing you to determine their vector magnetization components and susceptibility tensor. When used in combination with autorotation, the vector coils provide information that is essentially identical to that provided by a dedicated torque magnetometer. The vector coils mount directly to the 86-VTA option for use with all temperature options or can be mounted to the 86-VEC-MOUNT (sold separately) for room temperature measurements.

86-VEC-MOUNT

The vector option mount is used to mount the vector coils in the magnetic gap when room temperature measurements are desired. For measurements in conjunction with a temperature option, the vector coils mount directly to the 86-VTA.

TPS-FRG TURBOMOLECULAR VACUUM PUMP STATION

Used to annually evacuate the cryogen transfer line of the optional cryostat and single stage variable temperature assembly (transfer line and kit are included with these options), the TPS-FRG provides vacuum to $1.33 \times 10^{-3} \mathrm{~Pa}\left(10^{-6} \mathrm{Torr}\right)$. In addition to annual cryogen transfer line maintenance, the turbomolecular vacuum pump can also be used in place of the E2M rotary vacuum pump for evacuating the cryostat vacuum space.

RECIRCULATING CHILLERS

Lake Shore offers NesLab ${ }^{\circledR}$ recirculating chillers in order to provide a complete laboratory solution. The NesLab chillers feature a CFC-free refrigeration system.
The refrigeration system uses a hermetically sealed compressor and hot gas bypass system of temperature control. This system eliminates on/off cycling and premature wear of the compressor. Strong pumps provide continuous flow even through cooling lines with small IDs.

86-VEC attached to SSVT option

86-VEC attached to 86-VEC-MOUNT for room temperature operation

Vibrating sample magnetometers 8600 series

SHIPPING DIMENSIONS (W $\times \mathrm{D} \times \mathrm{H}$) AND WEIGHT

Weights/sizes are approximate. Actual weight and size will vary with system configuration.

	Model 8604	Model 8607
Instrument console, electronics, and computer	$122 \mathrm{~cm} \times 92 \mathrm{~cm} \times 132 \mathrm{~cm}$	$122 \mathrm{~cm} \times 92 \mathrm{~cm} \times 132 \mathrm{~cm}$
	$(48 \mathrm{in} \times 36 \mathrm{in} \times 52 \mathrm{in})$	$(48 \mathrm{in} \times 36 \mathrm{in} \times 52 \mathrm{in})$
	$318 \mathrm{~kg}(700 \mathrm{lb})$	$318 \mathrm{~kg}(700 \mathrm{lb})$
Electromagnet, magnet base,	$132 \mathrm{~cm} \times 132 \mathrm{~cm} \times 137 \mathrm{~cm}$	$132 \mathrm{~cm} \times 132 \mathrm{~cm} \times 137 \mathrm{~cm}$
and frame	$(52 \mathrm{in} \times 52 \mathrm{in} \times 54 \mathrm{in})$	$(52 \mathrm{in} \times 52 \mathrm{in} \times 54 \mathrm{in})$
	$590 \mathrm{~kg}(1300 \mathrm{lb})$	$985 \mathrm{~kg}(2170 \mathrm{lb})$
Head	$92 \times 66 \times 89 \mathrm{~cm}$	$92 \times 66 \times 89 \mathrm{~cm}$
	$(36 \times 26 \times 35 \mathrm{in})$	$(36 \times 26 \times 35 \mathrm{in})$
Power supply	$79 \mathrm{~kg}(175 \mathrm{lb})$	$79 \mathrm{~kg}(175 \mathrm{lb})$
	(Included in instrument console)	$122 \mathrm{~cm} \times 92 \mathrm{~cm} \times 132 \mathrm{~cm}$
		$(48 \mathrm{in} \times 36 \mathrm{in} \times 52 \mathrm{in})$
		$340 \mathrm{~kg}(750 \mathrm{lb})$

INSTALLATION DIMENSIONS (W $\times \mathrm{D} \times \mathrm{H}$) AND WEIGHT

Weights/sizes are approximate. Actual weight and size will vary with system configuration.

	Model 8604	Model 8607
Instrument console, electronics,	$79 \mathrm{~cm} \times 77 \mathrm{~cm} \times 160 \mathrm{~cm}$	$79 \mathrm{~cm} \times 77 \mathrm{~cm} \times 160 \mathrm{~cm}$
and computer	$(31 \mathrm{in} \times 30 \mathrm{in} \times 63 \mathrm{in})$	$(31 \mathrm{in} \times 30 \mathrm{in} \times 63 \mathrm{in})$
	$272 \mathrm{~kg}(600 \mathrm{lb})$	$272 \mathrm{~kg}(600 \mathrm{lb})$
Electromagnet, electromagnet	$84 \mathrm{~cm} \times 82 \mathrm{~cm} \times 140 \mathrm{~cm}$	$120 \mathrm{~cm} \times 82 \mathrm{~cm} \times 140 \mathrm{~cm}$
base, head, and frame	$(33 \mathrm{in} \times 32 \mathrm{in} \times 55 \mathrm{in})$	$(47 \mathrm{in} \times 32 \mathrm{in} \times 55 \mathrm{in})$
	$624 \mathrm{~kg}(1375 \mathrm{lb})$	$1018 \mathrm{~kg}(2245 \mathrm{lb})$
Power supply	(Included in instrument console)	$56 \mathrm{~cm} \times 66 \mathrm{~cm} \times 107 \mathrm{~cm}$
		$(22 \mathrm{in} \times 26 \mathrm{in} \times 42 \mathrm{in})$
		$295 \mathrm{~kg}(650 \mathrm{lb})$

APPLICATION NOTES

- First-Order-Reversal-Curve Analysis of Exchange Bias Magnetic Multilayer Films
- First-Order-Reversal-Curve Analysis of Permanent Magnet Materials
- First-Order-Reversal-Curve (FORC) Measurements of Magnetic Materials
- Large Signal, Anisotropic Sample Measurements in the Lake Shore Model 7410 VSM
- Rock Magnetism and First-Order- Reversal-Curve (FORC) Measurements
- Determination of the Magnetic Entropy Change from Magnetic Measurements: the Importance of the Measurement Protocol

PUBLICATIONS

- Magnetometry and First-Order-Reversal-Curve (FORC) Studies of Nanomagnetic Materials
- High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials
- High-Temperature FORC Study of Single- and Multi-phase Permanent Magnets
- First-Order-Reversal-Curve Analysis of Multi-Phase Ferrite Magnets
- First-Order-Reversal-Curve Analysis of Nanocomposite Permanent Magnets
- First-Order-Reversal-Curve Analysis of Nanoscale Magnetic Materials
- First-Order-Reversal-Curve Measurements of Nano-magnetic Materials
- Magnetocaloric Measurements: From Energy Efficient Refrigeration to a Tool for the Study of Phase Transitions
- Magnetic Anisotropy: Measurements with a Vector Vibrating Sample Magnetometer
- Magnetometry Measurements
- First-Order-Reversal-Curves Enhance Understanding of Nanoscale Magnetic Materials
- Characterizing Permanent Magnet Materials with a Vibrating Sample Magnetometer
- Finite Sample Size Effects on the Calibration of Vibrating Sample Magnetometers
= Magnetic In-line Metrology for GMR Spin-Valve Sensors

SITE REQUIREMENTS

A system-specific site prep checklist will be provided

POWER

Instrumentation, computer, and optional vacuum pump require two standard single-phase electrical outlets (20 A maximum). Magnet power supply and optional recirculation chiller require 3-phase electrical outlets (21 A maximum).

WATER

Electromagnet requires one supply and one return line for cooling with up to $15 \mathrm{~L} / \mathrm{min}$ and 30 to 50 psi. Magnet power supply requires a minimum of $7.6 \mathrm{~L} / \mathrm{min}$ with a maximum pressure of 80 psi and $+15^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ water temperature.

FLOOR

The floor must support the weight of the magnet, supply, and the equipment used to move them into place. The weight of the console is negligible in comparison. Heavy concrete ground floors usually prove best, not only because they have the required strength, but such a floor also transmits minimal building vibration to the magnetometer.

The system also requires minimum spacing between each of the above three pieces and 0.75 m for access to the rear of the equipment. (See Installation Dimensions and Weight table.)

ENVIRONMENT

The VSM requires a temperature-controlled environment that is relatively free of airborne dust and debris. There should be no equipment placed next to the VSM system that would emit or be susceptible to high levels of magnetic interference (distribution boxes, vibration equipment, x-ray machines, etc.)

Vibrating sample magnetometers 8600 series

QUICKLIGN"M SAMPLE ROBS AND HOLDERS

Use sample rods and corresponding sample holders, or choose one of the integrated rod/holders to meet your application needs.

ROOM TEMPERATURE AND CRYOGENIC APPLICATION SAMPLE ROD AND HOLDERS

86-SR-0935 FIBERGLASS SAMPLE ROD WITH KEL-F THREAD

SAMPLE HOLDERS FOR 86-SR-0935

Sample holder	Sample orientation	Holder material	Minimum ExactGAP ${ }^{\text {Tw }}$ index
730931	Powder disposable cup	Kel-F®	2 (8mm)
730933	Thin film side mount	Kel-F®	
730934	Thin film bottom mount	Kel-F®	
730935	Liquid disposable cup	Kel-F®	
86-SH-0840	Gel cap straw mount	Kel-F®	
86-SH-0841	Disposable gel caps and straws (1000 count)*	Gelatin	

*Room temperature use only

730931 Kel-F powder disposable cup

730935 Kel-F liquid disposable cup

730933 Kel-F side mount

86-SH-0840 gel cap straw mounts

730934 Kel-F bottom moun

86-SH-0841 disposable gel caps and straws

HIGH TEMPERATURE APPLICATION SAMPLE ROD AND HOLDERS

86-SR-0932 QUARTZ SAMPLE ROD WITH BN THREAD

SAMPLE HOLDERS FOR 86-SR-0932

Sample holder	Sample orientation	Holder material	ExactGAP ${ }^{\text {m }}$ index
730937	Disposable BN cup	BN	$\begin{aligned} & \text { OVEN—5 }(6.4 \mathrm{~mm}) \\ & \text { SSVT—3 (} 6.4 \mathrm{~mm} \text {) } \end{aligned}$
730938	Thin film side mount	BN	
730939	Thin film bottom mount	BN	

730937 disposable BN cup

730938 BN side mount

730939 BN bottom mount

Vibrating sample magnetometers 8600 series

single plece integrated sample rods/holders (FOR ROOM TEMPERATURE AND (RYOGENIC APPLICATIONS)				
Integrated sample rod/holder	Sample orientation	Material	Gap	Minimum Exacticap ${ }^{\text {m index }}$
86-18-0930	Botom mount	Quartz	Standard gap	$2(8 \mathrm{~mm})$
86-1/-0931	Side mount	Quart	Standard gap	$2(8 \mathrm{~mm})$
86-1-0937	Side mount	Quart	Small gap	$1(3.5 \mathrm{~mm})$
86-1-0938	Botom mount	Quart	Small gap	$1(3.5 \mathrm{~mm})$
$86-1-0933$	Side mount	Fibercass	Small gap	$1(3.5 \mathrm{~mm})$
86-1-0934	Botom mount	Fiberclass	Smal gap	$1(3.5 \mathrm{~mm})$

SAMPLE ASSEMBLIES INCLUDED WITH BASE SYSTEM AND OPTIONS

	Sample holders							Sample rods		Single piece integrated sample rod/holder			
	730931	730933	730934	730935	730937	730938	730939	86-SR-0932	86-SR-0935	86-IS-0930	86-IS-0931	86-IS-0933	86-IS-0934
	Kel-F powder disposable cup	Kel-F thin film side mount	Kel-F thin film bottom mount	Kel-F liquid disposable cup	Disposable BN cup	BN thin film side mount	BN thin film bottom mount	Quartz sample rod, BN thread	Fiberglass sample rod, Kel-F thread	Quartz bottom mount	Quartz side mount	Fiberglass side mount (small gap)	Fiberglass bottom mount (small gap)
Base system	3	3	3	1					1			1	1
With cryostat										1	1		
With oven					1	1	1	1		1	1		
$\begin{aligned} & \hline \text { With } \\ & \text { SSVT } \end{aligned}$					1	1	1	1		1	1		

Vibrating sample magnetometers 8600 series

ORDERING INFORMATION

8600 Series systems
8604
Advanced performance VSM with 4 in electromagnet, Gen2 head, Model 737 controller, system console, Model 643 power supply, and software
8607 Advanced performance VSM with 7 in electromagnet, Gen2 head, Model 737 controller, system console, Model 648 power supply, and software
VSM-TRAINING 2 days on-site VSM operational training/verificationprice includes travel time and expenses;
*1 additional operational training/verification day required for each and every temperature option
VSM-TRAINING-1 Additional VSM operational training/verification days

7400 Series upgrades

Consult Lake Shore for information on upgrading your 7400
Series VSM to the 8600 Series

Options

Options are only compatible with the $\mathbf{8 6 0 0}$ Series VSMs.
86-CRYO
8600 Series $\mathrm{LN}_{2} / \mathrm{LHe}$ cryostat option. Temperature operating range is LN_{2} operation 77 K (flooded), 85 K to 450 K control range; LHe operation 4.2 K (flooded), 5.5 K to 450 K control range. Used with the GlideLOCK alignment system. Includes wall mount storage bracket. Requires 86 -VTA and TPSFRG turbomolecular pump (must be ordered separately). Supplemental requirements are LN_{2} Dewar ($1220-50$ or equivalent) or LHe Dewar and LN_{2} or LHe gas cylinder and

86-OVEN regulator.
8600 Series high temperature oven option. Temperature operating range is room temperature to 1273 K . Used with the GlideLOCK alignment system. Includes wall mount storage bracket. Requires 86 -VTA and 705 gas controller (must be ordered separately). Supplemental equipment requirements are argon gas cylinder with regulator, and vacuum pump with blankoff pressure of 5×10^{-3} Torr.
86-SSVT $\quad 8600$ Series single stage variable temperature option. Temperature operating range is 77 K (flooded), 100 K to 950 K control range. Used with the GlideLOCK alignment system. Includes wall mount storage bracket. Requires 86 -VTA, 705 gas controller, and a mechanical vacuum pump (E2M or equivalent) kit providing sample space blank off pressure of 5 $\times 10^{-3}$ Torr. Periodic access to a turbomolecular vacuum pump (Lake Shore TPS-FRG or equivalent) for annual evacuation of the transfer line is required (if available, turbomolecular pump can also be used for routine operation). Supplemental equipment requirements are argon gas cylinder with 50 psi gas regulator, nitrogen gas cylinder with 50 psi gas regulator, an LN_{2} source to fill the provided $25 \mathrm{~L} \mathrm{LN}_{2}$ Dewar, and clean compressed air (40 psi).
86-VTA $\quad 8600$ Series variable temperature control option with Model 336. Option kit contains temperature controller and thermocouple card, GlideLOCK option mount, flanges, hoses, connectors, and accessories.
705 The Model 705 gas controller automates the 86-SSVT and $86-$ OVEN gas handling operation. The 705 operation is controlled by the 8600 Series software and allows the user to have unattended operation on the 86-SSVT option from 100 K to 950 K and optimizes the gas handling functions in conjunction with the 86 -OVEN option.
86-VEC Vector coil option. Mounts directly to the 86-VTA option for use with all temperature options or can be mounted to the 86 -VECMOUNT (sold separately) for room temperature measurements.
86-VEC-MOUNT Vector option mo for room temperature measuane

8600 Series accessories
$730907 \quad 2.4 \mathrm{~mm}$ diameter test sample sphere, NIST-traceable, 3.47 emu
730908 Nominal 3 mm diameter test sample, 99\% pure nickel sphere,
6.92 emu - standard with all 8600 Series systems (for daily VSM use)

730909 Nominal 1 mm diameter test sample, 99% pure nickel,
0.25 emu - standard with all 8600 Series systems (cross-calibrated to the 730908)
86-0910 Cement, high temperature, $-200{ }^{\circ} \mathrm{C}$ to $843^{\circ} \mathrm{C}$
730931 Sample holder, 2-piece cup, Kel- ${ }^{\circledR}$, upper and lower portion, required sample access is 8 mm (ExactGAP ${ }^{T M}$ index 2)
730933 Sample holder, thin film side mount, Kel- ${ }^{\circledR}$, required sample access is 8 mm (ExactGAP ${ }^{\text {TM }}$ index 2)
Sample holder, thin film bottom mount, Kel- F^{\circledR}, required sample access is 8 mm (ExactGAP ${ }^{\text {TM }}$ index 2)
Sample holder, liquid, upper and bottom portion, Kel-F ${ }^{\circledR}$, required sample access is 8 mm (ExactGAP ${ }^{\text {TM }}$ index 2)
730937 Sample holder, 2-piece cup, boron nitride, required sample access is 8 mm (ExactGAP ${ }^{\text {TM }}$ index 2)
Sample holder, thin film side mount, boron nitride, required sample access is 8 mm (ExactGAP ${ }^{T M}$ index 2)
730939 Sample holder, thin film bottom mount, boron nitride, required sample access is 8 mm (ExactGAP ${ }^{T M}$ index 2)
86-SH-0840 Sample holder, gel cap straw mount (room temperature only), required sample access is 8 mm (ExactGAP ${ }^{T M}$ index 2)
86-SH-0841 Sample holder, disposable gel cap with straw, 1000 quantity (room temperature only), required sample access is 8 mm (ExactGAP ${ }^{\text {Tm }}$ index 2)
86-IS-0930 Sample rod, quartz with integrated thin film bottom mount, required sample access is 8 mm (ExactGAP ${ }^{T M}$ index 2)
86-IS-0931 Sample rod, quartz with integrated thin film side mount, required sample access is 8 mm (ExactGAP ${ }^{\text {TM }}$ index 2)
86-SR-0932 Sample rod, quartz rod only-requires separate sample holder, required sample access is 8 mm (ExactGAP ${ }^{\text {TM }}$ index 2)
86-IS-0933 Sample rod, fiberglass with integrated thin film side mount, required sample access is 3.5 mm (ExactGAP ${ }^{\text {TM }}$ index 1)
86-IS-0934 Sample rod, fiberglass with integrated thin film bottom mount, required sample access is 3.5 mm (ExactGAP ${ }^{\text {TM }}$ index 1)
86-SR-0935 Sample rod, fiberglass rod only—requires separate sample holder, required sample access is 8 mm (ExactGAP ${ }^{\top M}$ index 2)
86-IS-0937 Sample rod, quartz with integrated thin film side mount, required sample access is 3.5 mm (ExactGAP ${ }^{\text {TM }}$ index 1)
86-IS-0938 Sample rod, quartz with integrated thin film bottom mount, required sample access is 3.5 mm (ExactGAP ${ }^{\text {TM }}$ index 1)
86-LC Replacement set of large gap pick-up coils (one set is included with each system)
86-0911 Replacement Hall probe

TPS-FRG-100/120V Compact turbo pumping system; includes V-84 turbo pump (NW 40) with oil free dry scroll backing pump, FRG-700 full range gauge, controller, and interface cable to USB port; includes Agilent 24 month warranty NOTE: requires SYS-TP-KIT
TPS-FRG-220/240V-CE Compact turbo pumping system; includes V-84 turbo pump (NW 40) with oil free dry scroll backing pump, FRG-700 full range gauge, controller, and interface cable to USB port; includes Agilent 24 month warranty NOTE: requires SYS-TP-KIT
SYS-TP-KIT

1220-50
$50 \mathrm{~L} \mathrm{LN}_{2}$ Dewar with $1 / 2$ in top withdraw port and 10 psi pressure relief valve

Go to www.lakeshore.com for the current list of available recirculating chillers 03/30/2020

Quantum Design

