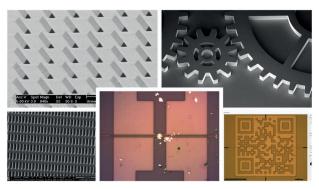

MicroWriter ML® 3 Baby

Power consumption of the machine even when exposing is comparable to that of a laptop.

WORLDWIDE USER BASE

Over 170 laboratories around the world, including national labs and international leading Universities.

INTUITIVE WINDOWS® **USER INTERFACE**


Designed for use by PhD students and post-docs in a research environment while offering high levels of flexibility.

COMPETITIVE PRICE AND LOW COST OF OWNERSHIP

Affordable price ideal for universities and industrial R&D.

For more information, please visit us on the Web at: www.durhammagnetooptics.com

The MicroWriter ML® products are a range of photolithography machines designed for rapid prototyping and small volume manufacturing in R&D laboratories and clean rooms.

Conventional approaches to photolithography are usually based on exposing through a chromium-glass mask manufactured by specialist vendors. In R&D environments it is often necessary to change the mask design frequently. Direct-write lithography tools (also known as digital mask aligners or maskless aligners) overcome this problem by holding the mask in software. Rather than projecting light through a physical mask, direct-write lithography uses computercontrolled optics to project the exposure pattern directly onto the photoresist.

MicroWriter ML®3 Baby is a compact, highperformance, direct-write optical lithography machine which is designed to offer unprecedented value for money in a small laboratory footprint. It also has an excellent environmental footprint: power consumption of the machine even when exposing is comparable to that of a laptop.

Measuring only 70cm x 70cm at its base, the MicroWriter ML®3 Baby sits on a standard laboratory bench or desk and plugs into a supplied laptop computer. Its only service requirement is a standard power socket. A light-excluding enclosure with safety interlock allows it to be used equally well in an open laboratory environment or in a clean room. Easy to use Windows® based software means most exposures can be set up and launched with just a few mouse clicks. An interferometer controlled XY stage allows accurate overlay across an entire wafer. A carefully optimised friction chuck allows delicate samples and substrates (with no minimum size limitation) to be used. The system by default uses all-optical autofocus, which works well on large wafers as well as on small or nonconventional samples.

FAST WRITING SPEEDS

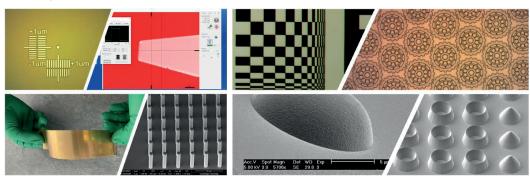
50mm²/minute at 1µm resolution, allowing a typical a typical 50mm x 50mm area to be exposed in under 1 hour

AUTOFOCUS

Works well on large wafers as well as on small samples or on non-conventional samples.

DUAL WAVELENGTH EXPOSURE LIGHTSOURCE OPTION

Adds both 365nm light source and 405nm light source; software selectable


HIGH PERFORMANCE **INTERFEROMETER**

Uses a high performance XY

laser interferometer for position control.

For more information, please visit us on the Web at: www.durhammagnetooptics.com

Key features and specifications

- 149mm x 149mm maximum writing area.
- 155mm x 155mm x 7mm maximum wafer size.
- 1µm minimum feature size across full writing area.
- 405nm long-life semiconductor light source, suitable for broadband, g- and h-line positive and negative photoresists (e.g. S1800, ECI-3000, MiR 701). Replacement 385 nm and 365nm lightsources available as option, suitable for q., h., and i-line photoresists (e.g. SU8). Dual wavelength option (405nm lightsource and 365nm lightsource, software
 - selectable) available for best performance across g-, h-, and i-line photoresists.
- XY interferometer with 15nm resolution for precise motion control.
- Extremely fast writing speed up to: 50mm²/minute (1µm minimum feature size). This allows a typical 50mm x 50mm area to be exposed in under 1 hour.
- Optical autofocus system using yellow light with real-time surface tracking module no minimum wafer size.
- High quality infinite conjugate optical microscope with x10 Olympus plan achromatic objective lens, and yellow light illumination for alignment to lithographic markers on the wafer (±2.0μm 3σ alignment accuracy).
- Additional x4 digital zoom can be selected in software.
- Grey scale exposure mode for 3-dimensional patterning (up to 255 grey levels).
- Export image tool (also known as "Draw Mode") allowing exposures to be designed directly on top of an image taken from the real-time microscope.
- Built-in databases to store common lithographic marker positions and exposure parameters for different photoresists.
- Software API for external interfacing and control, allowing scripting and development of more advanced automatic procedures.
- 100nm minimum addressable grid. 15nm sample stage resolution.
- Acceptable file formats: CIF, GDS2, BMP, TIFF, JPEG, PNG, GIF; Oasis, DXF, Gerber RS-274X acceptable via KLayout conversion.

Key features and specifications

AUTOCALIBRATION

Autocalibration tool allowing users to check and correct calibration

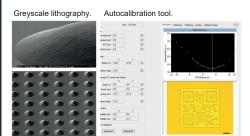
AUTOMIC MARKER RECOGNITION

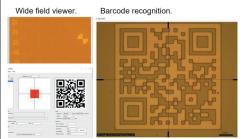
Automatically identify the precise position of lithographic markers visible the real-time microscope.

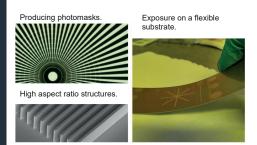
AUTOMATIC BARCODE GENERATION AND RECOGNITION

Automatically create the exposure pattern for 2D barcode.

Developed barcode can be identified automatically.


COMPACT LABORATORY FOOTPRINT


70cm (w) x 70cm (d) x 75cm (h).


TECHNICAL SUPPORT

International network of trained local service engineers to keep you running.

For more information, please visit us on the Web at: www.durhammagnetooptics.com

Well-established user base around the world.

- Automatic wafer centring tool.
- Autocalibration tool allowing users to check and correct calibration.
- 2D barcodes can be automatically generated through software for exposures. The software can then identify the developed barcode patterns and reads the contents.
- Bulls-eye tool can automatically identify the precise position of lithographic markers visible under the real-time microscope.
- Enhance contrast tool can digitally enhance contrast and brightness of a microscope image for seeing low contrast structures.
- Estimate theta tool can automatically determine the rotation angle of the current microscope image.
- Light-excluding enclosure with safety interlock.
- Easy to use, Windows® based control software supplied.
- Supplied with KLayout open-source mask design software (www.klayout.de).
- Supplied with pre-configured 64-bit Windows® 10/11 PC with monitor, keyboard, and mouse for 'plug and play' installation.
- Includes on-site installation by trained service technician.
- Extremely competitively priced for University and industrial R&D budgets.
- Can be later upgraded to MicroWriter ML[®] 3
 Baby Plus, Mesa or Pro for higher
 performance.
- 90-260 VAC, 50-60Hz, 4A single phase power requirement.
- External dimensions: 70cm (w) x 70cm (d) x 75cm (h), excluding computer.
- CE-marked and compliant with EN-61010.

Examples of fabricated structures

FRICTION CHUCK

Carefully designed friction chuck allows MEMS devices with nitride windows or other delicate substrates to be used; no minimum wafer size.

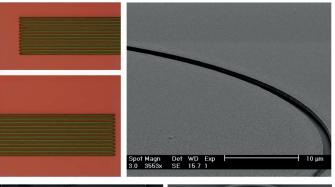
CURVED SUBSTRATES

Perform exposures across a variety of substrates, including flat and curved forms, Si, glass, ceramic, diamond, and liquid polymers.

PHOTOMASKS

Produce photomasks conveniently and cheaply.

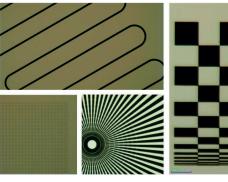
FREE SOFTWARE UPGRADE


Receives free software upgrades for the lifetime of the machine.

COMPANY CULTURE AND PHILOSOPHY

We are from a research and design (R&D) background based in Cambridge, UK and the Research Triangle Park, Durham, NC, USA.

For more information, please visit us on the Web at:


www.durhammagnetooptics.com

- Images of resolutionlimited structures. Left: Lines array with width of 1.0μm and period of 2.0μm on Si/Bottom antireflection coating/S1805 (0.5 μm). Right: A ring with width of 1.0 μm on Si/LOR/S1805 (0.5μm).
- Scanning Electron
 Microscope images of
 micro-moulds.
 Structures were
 produced on a 50µm
 thick SU8 layer.
 Aspect ratio of the dots
 array (bottom left) is 8.

 Optical Microscope images of patterns produced across varied types of substrates: Top left: AIN ceramic. Top right: Liquid polymer. Bottom left: Si/SiO₂. Bottom middle: Glass. Bottom right: Diamond.

 Optical Microscope images of patterns produced on a photomask.

