The WITec ultra-high throughput spectrometer (UHTS) series consists of exceptionally flexible and precise devices that meet the demands of cutting-edge confocal Raman imaging.

Varied excitation sources and scattering experiments require specialized optics for optimal throughput. The WITec UHTS design approach acknowledges this by employing a series of lens-based on-axis spectrometers for a range of excitation frequencies. In short, WITec offers a spectroscopic system perfectly matched to your experimental setup.

ULTRA-HIGH throughput

The ultra-high throughput of the UHTS series enables more than 70% total transmission. They are specifically designed for challenging Raman imaging and spectroscopy applications with intrinsically low light intensities.

ULTRA-FAST acquisition times

Using the UHTS for data collection, the acquisition time for a single Raman spectrum can be reduced to below one millisecond, providing essential benefits in confocal Raman microscopy where commonly thousands of Raman spectra must be acquired.

ULTRA-SHARP and symmetric peak shape

WITec UHTS spectrometers deliver outstanding spectral and imaging quality. Symmetric peak shapes are ensured by design for coma/astigmatism-free spectra acquisition.
Spectral and pixel resolution facts:
The resolving power of a spectroscopic system depends on focal length, grating groove density and the pixel size of the CCD camera used for detection. The overall goal is to find the ideal balance with regard to acquisition time, signal-to-noise ratio and spectral resolution. Increasing the focal length or the number of grooves per millimeter on the grating increases the spectral resolution dramatically. This is accompanied by a reduced signal intensity per pixel and detectable spectral range as the light is spread out over a larger area. With the ultra-high throughput of the WITec spectrometer series, this signal loss is greatly reduced and the full spectral bandwidth is retained through integrated spectral stitching procedures. As a result, highly-resolved spectra can be obtained from the full relevant spectral range up to a width of more than 9700 wavenumbers and the pixel resolution can be as good as 0.1 cm⁻¹/pixel.
WITec UHTS Series

The lens-based, excitation wavelength-optimized spectrometers of the UHTS series allow more than 70% total transmission for high speed and high resolution Raman imaging. All UHTS spectrometers feature an optical fiber port and an automated triple-grating turret. Customers can choose from among a variety of focal lengths and gratings to match individual requirements in terms of spectral range or resolution.

SPECTRAL RANGE

01	UHTS 300 VIS
02	UHTS 600 VIS
03	UHTS 400 UV-VIS
04	BROADBAND UHTS 300 VIS-NIR
05	UHTS 400 NIR
06	UHTS 300 IR

03 UHTS 400 UV-VIS

With an optical system adapted and tailored for UV measurements starting at 355 nm, the UHTS 400 UV-VIS expands Raman imaging capabilities even further for lasers at or below 488 nm.

04 UHTS 300 VIS-NIR

Applications requiring broadband excitation from the visible to the near-infrared can greatly benefit from the UHTS 300 VIS-NIR. This spectrometer is well suited for multiple laser configurations between 532 nm and 830 nm while maintaining the advantages of the UHTS series.
In the near-infrared regime the use of NIR-optimized optical components is essential for high-throughput spectral acquisition. A focal length of 400 mm, a specialized set of gratings and state-of-the-art deep depletion CCD technology combine to form an ideal solution for NIR Raman spectroscopy.

The UHTS 300 IR covers the excitation range from 800 to 1700 nm, featuring infrared-optimized optical components, gratings and detectors for highly precise and accurate Raman and photoluminescence experiments.

For individual excitation requirements not listed, WITec can provide a variety of proven and installed spectroscopy solutions. Please discuss your specific needs with the WITec Raman imaging specialists to determine the best configuration.
WITec CCD Detectors

Capability, Versatility and Expandability for Raman Spectroscopy – Optimized Today, Ready for Tomorrow

WITec spectroscopic systems can be individually configured to meet sophisticated requirements for a wide variety of applications. No other manufacturer can provide such a high level of flexibility. Several different types of CCD cameras with quantum efficiencies exceeding 90% can be integrated with the UHTS series.

01 FRONT-ILLUMINATED (FI) CCD

A front-illuminated CCD is characterized by a broad range of possible applications and wavelengths, generally oriented toward budget-conscious but advanced experimental setups.

02 ELECTRON-MULTIPLYING (EM) CCD

For sophisticated and leading-edge Raman applications, an EM CCD provides the most advanced readout capabilities for low light-level detection or ULTRA-FAST RAMAN IMAGING®. Readout speed can be as low as 760 µs per spectrum (1300 spectra/s) and dark current as low as 0.0001 electrons/pixel/s.

Confocal Raman image of toothpaste. 200 x 200 pixels, 40,000 spectra, acquisition time per spectrum: 760 µs, per image: 40 s.
03 OPEN ELECTRODE (OE) CCD

The open electrode (OE) CCD is a front-illuminated camera that enables the acquisition of almost the entire spectral bandwidth and is particularly well suited to measurements in the UV. In order to achieve state-of-the-art signal-to-noise ratios it features a low dark-current and multi-purpose camera functionality.

04 LOW DARK-CURRENT DEEP DEPLETION CCD

Near-infrared (NIR) spectroscopic Raman and photoluminescence (PL) measurements require specialized CCD detectors to prevent the spectral data from being influenced by “etaloning,” an effect that occurs when the Si-CCD chip materials become increasingly transparent to light at longer wavelengths. With the low dark-current deep depletion technology provided by this detector, critical NIR and PL experiments can be performed with minimal signal loss.

05 BACK-ILLUMINATED (BI) CCD

With a quantum efficiency of 95% or more, the back-illuminated CCD sets the industry standard for efficient Raman signal detection in the visible range. Compared to a front-illuminated CCD, they offer twice the quantum efficiency and are therefore suitable for precise and sensitive FAST RAMAN IMAGING® at the highest lateral resolution. (UV-optimized versions are also available.)

06 InGaAs LINEAR ARRAY DETECTOR

For scattering experiments above the Si-bandgap at approximately 1100 nm, WITec supplies state-of-the-art Indium-Gallium-Arsenide (InGaAs) linear array detectors that allow for spectral imaging in the IR up to 1700 nm with peak quantum efficiencies near 90%.

07 OTHERS UPON REQUEST
WITec spectroscopic systems enable the acquisition of Raman spectra, depth profiles and 3D images with exceptional spectral and spatial precision. This proven performance in speed, sensitivity and resolution is available without compromise or caveat, in your facility.

Symmetric Peak Shape: Cyclohexane

(A) Raman spectrum of cyclohexane acquired with the UHTS 300 VIS. (B) Zoom-in at the 1020 cm⁻¹ peak region. In addition to the measured spectra (blue) a Lorentzian-fitted curve is displayed (red). The almost perfect match of the measured spectra with the theoretically predicted curve shows the high accuracy of the measurement.
High-performance Raman Imaging Application: CCl₄ – Water-Oil Emulsion

(A) 3D confocal Raman image of an emulsion with corresponding Raman spectra shown in (B) Green: Alkane; Blue: Water; Yellow: CCl₄ + Oil. Image parameters: 200 x 200 x 20 pixels, 100 x 100 x 10 µm³ scan range, 0.06 s integration time per spectrum, 532 nm excitation wavelength. (C) Zoom-in image with high spectral resolution. Image parameters: 100 x 100 pixels, 10 x 10 µm³, 0.08 s integration time per spectrum, UHTS 600 spectrometer, 1800 g/mm grating. (D) Due to the high spectral resolution of the spectroscopic system the CCl₄ bands at around 460 cm⁻¹ can be clearly resolved even at room temperature.

Sensitivity: Raman Spectrum 4th Order of Silicon

The ability to resolve the peak of the 4th order band of Si is widely considered to be a measure of the sensitivity of a Raman spectroscopy system. The spectrum above shows the 4th order Si peak acquired with the UHTS 300 VIS equipped with an EMCCD. No data post-processing other than cosmic ray removal was applied.

The very high signal-to-noise ratio along with the low intensities of the O₂ and N₂ peaks indicate the true confocality of the system as the detected signals from the environment (e.g. air) are extremely low, showing that the contribution from out-of-focus light is effectively blocked by the pinhole.
Confocal Raman Imaging
WITec Raman Spectroscopy Solutions

WITec Raman imaging systems combine extremely sensitive confocal microscopes with ultra-high throughput spectrometers for unprecedented capability in chemical characterization. Our Raman imaging specialists are ready to assist in defining an optimized system for individual applications and budget requirements. Even future ambitions can be taken into account as WITec systems are fully upgradeable, scalable and able to incorporate additional excitation wavelengths, scan stages and microscopy techniques. If your scientific approach changes, WITec systems can change with you.

Raman Imaging Benefits

- Detailed analysis of chemical compound distribution, amorphous/crystalline forms and material stress properties
- Lateral spatial resolution down to ~200 nm (diffraction limited)
- 3D chemical imaging due to confocal setup
- Nondestructive
- Minimal, if any, sample preparation
- Correlative imaging readily available (AFM, SNOM, TERS, SEM)
The WiTec UHTS series can be equipped with a selection of market-leading high-quality spectroscopic CCD detectors. With chip sizes and quantum efficiencies matched to the optical components of the spectrometer, setting the benchmark for FAST- and ULTRA-FAST RAMAN IMAGING® has never been easier.
Confocal Raman imaging system alpha300 R with UHTS 300 spectrometer