Atomic force microscopy at low temperatures

A cryogenic environment can dramatically increase the Q factor (quality factor) of an atomic force microscope (AFM). 

A high Q factor leads to better image resolution and higher sensitivity. It reduces the risk for damage on the sample and AFM tip. On the other hand, the resonator properties (amplitude, phase, resonant frequency) change in both size and polarity. Additionally, problems may occur during the measurement. While an increased sensitivity may seem desirable, aspects that under certain environmental conditions disappear in the noise can be dangerous at low temperatures. For example, at low temperatures the intrinsic attenuation of the AFM tip is smaller than at higher temperatures, which leads to higher sensitivity of the tip in regards to interactions with the sample surface. This results in better resolution in z direction, as smaller force gradients can be detected. This topic is treated in great detail in a white paper by Ryan Murdick, a well-known expert in the field of AFM technology. Since 2017, Ryan Murdick has been contributing his expertise as Product Development Scientist at Montana Instruments. The full white paper can be found at this link: http://downloads.montanainstruments.com/cryogenic_afm/

Contact

Dr. Simone Paziani
Dr. Simone Paziani

Register

Newsletter registration

Contact

Quantum Design s.r.l.

Italy and Israel branch office
Via Francesco Sapori, 27
00143 Roma
Italy

Phone:+39 06 5004204
Fax:+39 06 5010389
E-mail:italy@qd-europe.com
Dr. Simone PazianiSales Director
+39 06 5004204
Write e-mail