Our partner Lake Shore Cryotronics environment by Janis

SuperTran Continuous Flow Cryostat Systems

from Lake Shore Cryotronics

The SuperTran series (ST) sample in vacuum models cover the temperature range from <2 K to 800 K.  In addition to general-purpose systems, Janis Research builds ST systems designed for specific applications including FTIR, ESR, NMR, UHV, Hall effect, atomic force, microscopy and more. Temperature control capability in an economical and easy-to-use package.

Features
  • No vacuum pump required for temperatures over 4.2 K
  • No heating of exhaust gas required
  • Monitoring of flow rate not required
  • Easily adaptable to a He recovery system
  • Highly flexible transfer line with a minimum 12 in bend radius

Further information

With an extensive range of field-proven applications and a worldwide installation base, Janis Research SuperTran represents the state-of-the-art in continuous flow cryostat design. Using liquid helium (LHe) or liquid nitrogen (LN2), most of the systems provide fast (15 min or less to 4.2 K with LHe) cooldown, a <2 K to 325 K total operating range, and precise temperature control capability in an economical and easy-to-use package.

All systems consist of a cold finger, radiation shield, sample holder, lightweight aluminum vacuum shroud, electrical feedthrough ports, and a high efficiency flexible 6 ft cryogen transfer line. SuperTrans can be operated in any orientation with only minor variations in efficiencies. Temperatures of the sample are varied by means of a heater attached to the cold finger. The sample mount and all standard Janis sample holders have provisions for thermometry which, in conjunction with an optional temperature controller, allow precise control over sample temperature.

Standard systems produce sample temperatures of 77 K to 325 K (LN2) and 4.2 K to 325 K (LHe). Continuous operation at temperatures below 4.2 K is readily achieved by reducing the pressure at the venting port of the system. For most of the systems, <2 K temperatures can typically be maintained for approximately seven minutes without external heat load by pumping on the LHe inventory of the cold finger. Optional high-power heaters provide sample temperatures to 800 K on special order.

A high efficiency superinsulated, vacuum-jacketed transfer line, equipped with evacuation and safety pressure relief valves, connects the cryostat head to a storage Dewar. The 0.50 in diameter storage Dewar leg fits most commercially available storage Dewars. All Janis Research systems are fully integrated and liquid helium tested at the Wilmington, Massachusetts facility prior to shipment.
If rising liquid helium costs are making it difficult to conduct your research, Janis' recirculating gas cooler eliminates the use of liquid helium for "wet" systems.

Available systems:

ST-100 Cryostat Systems (https://www.lakeshore.com/products/product-detail/janis/st-100-optical-cryostat)
Optical continuous flow cryostat suitable for a wide range of applications: the window material and geometry can be specified to allow spectroscopy with excitation energies from gamma rays through to the far-infrared.

ST-100-FTIR Cryostat Systems (https://www.lakeshore.com/products/product-detail/janis/st-100-ftir-cryostat)
Optical continuous flow cryostat suitable for FTIR applications. These cryostats are similar to our standard model ST-100 cryostats, but with the ability to manipulate between samples.

ST-170 ESR Cryostat Systems (https://www.lakeshore.com/products/product-detail/janis/st-170-esr-cryostat)
Specifically designed for magnetic resonance applications, the ST-170 cryostat is the ideal choice for ESR spectroscopy. Using the same high-efficiency transfer line as the other SuperTran cryostats, the ST-170 features low helium consumption and fast cooldown. The cryostat will easily fit between the poles of a magnet.

ST-200 Tubular Systems (https://www.lakeshore.com/products/product-detail/janis/st-200-cryostat)
Cryostats with tubular tails suitable for resistivity measurements or experimental configurations where square tails are undesirable.

ST-200/NMR Tubular Systems (https://www.lakeshore.com/products/product-detail/janis/st-200-cryostat)
Cryostats with tubular tails suitable for resistivity measurements or experimental configurations where square tails are undesirable. The ST-200-NMR systems are like the standard ST-200 but custom-designed for NMR spectroscopy.

ST-300/300T Compact Systems (https://www.lakeshore.com/products/product-detail/janis/st-300-t-cryostats)
Designed for experiments with limited space, these cryostats are available in optical or non-optical configurations. The tail diameters can be specified to fit your experiment.

ST-300-MS Compact System for Microscopy (https://www.lakeshore.com/products/product-detail/janis/st-300-ms-cryostat)
Designed as an alternative to the ST-500 microscope cryostat, this compact cryostat combines short working distance with the standard SuperTran design. The ST-300-MS cryostat is intended for use in experiments with very tight space restrictions and is available with a compact or ultra-compact window block.

ST-400 Ultra High Vacuum Systems (https://www.lakeshore.com/products/product-detail/janis/st-400-uhv-cryostat)
An efficient means of reaching low temperatures in a UHV environment, this cryostat is designed for system operation at pressures to 10-11 Torr and bakeout temperatures to 500 K. The length of the cryostat is specified to fit your UHV chamber.

ST-500 Microscopy Cryostat
Designed for use in microscopy, imaging, and high spatial resolution photoluminescence. The combination of the low thermal-expansion support structure and internal vibration isolation results in ultra-low vibration and drift levels. The cryostat geometry offers a short working distance (for use with high magnification optics) and permits mounting on common microscope stages and translators.

ST-500UC Ultra-compact Microscopy Cryostat
Low-profile cryostat designed for use in microscopy and imaging applications. The combination of the low thermal-expansion support structure and internal vibration isolation results in low vibration and drift levels. The cryostat geometry offers a short working distance (for use with high magnification optics) between the top window and the sample.

Options and Accessories

(https://www.lakeshore.com/products/product-detail/janis/supertran--vp-options-and-accessories)

Downloads

ST-100/ST-200
ST-100 FTIR
ST-300
ST-300 MS
ST-400
ST-500
The Beginner’s Guide to Cryostats and Cryocoolers

Contact

Staffan Eriksson
Staffan Eriksson

Contact

Quantum Design GmbH

Roddarestigen 3
SE 182 35 Danderyd
Sweden

Phone:+46 8 41071791
E-mail:nordicqd-europe.com
Staffan ErikssonSales Manager
+46 8 410 71791
Write e-mail