Interfacial Shear Rheometer ISR Flip

from KSV NIMA

Expand your understanding of interfacial layers with ISR Flip from KSV NIMA. This next-generation interfacial shear rheometer enables highly sensitive measurements of interfacial viscoelasticity. Both at air-liquid and liquid-liquid interfaces.

Features
  • Prediction of emulsion, froth and foam stability
  • Real-time monitoring of surface reactions
  • Determination of thin film structure
  • Continuous monitoring of molecule adsorption into interfaces
  • Examination of phase transitions

Further information

Highly sensitive measurements
The lightweight magnetized probes enable highly sensitive measurement with minimum interaction between the instrument and the probe.

Full control of the probe
The magnetic trap keeps the probe positioned even through a long experiment or during procedures such as monolayer spreading. The strength of the trap can be precisely controlled by moving the trap closer or further away from the probe. This also enables wide moduli and frequency range for a single probe.

Expand your measurement possibilities
ISR Flip supports two camera positions to suit more purposes. Combining the instrument with a Langmuir trough allows the control of the monolayer packing density. The same trough can be used for both air-liquid and liquid-liquid measurements.

Applications controlled by interfacial rheology, including:

  • Biological systems such as pulmonary lung surfactant and meibum. Their functionality is largely based on their flow on interphases under stress.
  • Emulsions and foams whose stability is vital for their functionality. Viscoelasticity of the liquid-liquid interface can predict the stability of a colloidal system. Micelle/droplet fusion and fission are largely dependent on the interface viscoelasticity.
  • Food products, cosmetics, biophysics, pharmaceuticals, oil and gas, application areas where molecules at interfaces have a significant impact on the system performance.

Langmuir monolayer structural studies, including:

  • Phase changes, as the viscoelasticity of the layer is strongly affected by the microstructure of the monolayer.
  • Surface reactions such as crosslinking in real-time, as changes in molecular size and shape have typically a strong response in their rheological properties.
  • Aggregation and adsorption, as they typically change the viscoelasticity of the film.

Specifications

Measurements
Frequency range (Hz) 0.01 - 10
Dynamic moduli range (N/m) 2x10-8 - 1
Dynamic moduli resolution (N/m) 1x10-8
Strain range (%) 0.04 - 20a
Instrument
Camera USB 3.0 digital camera with zoom
Camera resolution 1980 x 1200
Field of view (Φ, mm) 4.7 mm x 2.93 mm / 0.73 mm x 0.45 mm
Instrument dimensions (LxWxH, mm 400 x 280 x 600
Weight (kg) 21
a The strain range is dependent on the channel width. For low volume the range is 0.08 - 40 

Model specification

  Langmuir Troughs
  ISR Flip High Compression ISR Flip Low Volume
Surface area (cm2) 588 13.2
Trough top inner dimensions, lower phase (LxWxH, mm) 784 x 75 x 10 120 x 11 x 6.5
Trough top inner dimensions, upper phase, (LxWxH, mm) 784 x 95 x 7 120 x 19 x 6
Lower subphase volume (ml) 588 4.7
Upper subphase volume (ml) 521 13.9
Maximum compression ratio 7.8 N.A.
Barrier speed (mm/min) 0.1 - 270 0.1 - 270
Balance measuring range (mN/m) 0 - 300 0 - 150b
Maximum balance load (g) 1 1
Balance resolution (μN/m) 0.03 0.04b
Instrument dimensions (L x W x H, mm) 908 x 280 x 600

400 x 280 x 770

b Pt-rod has to be used with the low volume cell

Downloads

ISR Flip

Videos

ISR Flip Marketing video with subs

Contact

Thomas Wagner
Thomas Wagner

Contact

Quantum Design GmbH

Im Tiefen See 58
64293 Darmstadt
Germany

Phone:+49 6151 8806-0
Fax:+49 6151 8806920
E-mail:germanyqd-europe.com
Thomas WagnerProduct Manager - Ellipsometry & Surface Science
+49 6151 8806-68
Write e-mail